传感器的基本特性(学习笔记一)
传感器的特性主要指输入、输出的关系特性,其输入-输出特性反映的是与内部结构参数有关系的外部特征,通常用静态特性和动态特性来描述。
一、静态特性
传感器的静态特性是指当被测量的数据值处于稳定状态时输入量与输出量的关系。只有传感器在一个稳定状态,表示输入与输出的关系式中才不会出现随时间变化的变量。衡量静态特性的重要指标有线性度、灵敏度、迟滞、重复性、分辨力、稳定性、漂移和可靠性等。
****1.线性度
线性度是指传感器输入量与输出量之间的静态特性曲线偏离直线的程度,又称为非线性误差,表示传感器实际特性曲线与拟合直线(也称为理论直线)之间的最大偏差与传感器量程范围内的输出之百分比,非线性误差越小越好。线性度的计算公式如下:
ΔLmax为最大非线性绝对误差;YFS为满量程输出值。
在实际使用中,大部分传感器的静态特性曲线是非线性的。可用一条直线(切线或割线)近似地代表实际曲线的一段,使输入、输出特性线性化,这条直线通常被称为拟合直线。如图1-4所示为几种拟合直线。
2.灵敏度
灵敏度是指传感器在稳定工作状态下输出变化量与输入变化量之比,用k来表示:
式中,Δy为输出量的增量;Δx为输入量的增量。
灵敏度表征传感器对输入量变化的反应能力。对于线性传感器而言,灵敏度是该传感器特性曲线的斜率;而对于非线性传感器来说,灵敏度是一个随着工作点变化的变化量,实际是该点的导数,如图1-5 所示为非线性传感器的输入-输出特性关系曲线。
3.迟滞现象
迟滞现象是指传感器在输入量由小到大(正行程)和输入量由大到小(反行程)变化时其输入-输出特性曲线不重合的程度,如果是同一大小的输入量,传感器正、反行程的输出量的大小是不相等的。
如图1-6所示为传感器迟滞现象的曲线。迟滞误差是指对应同一输入量的正、反行程输出值之间的最大差值与满量程值的百分比,通常用γH表示,即
传感器出现迟滞现象主要是由传感器中敏感元件材料的机械磨损、部件内部摩擦、积尘、电路老化、松动等原因引起的。
4.重复性
如图1-7所示,重复性是指传感器在输入量按照同一方向作全量程多次测试时,所得到的输入-输出特性曲线不一致的现象。多次测量时按照相同输入条件测试出的特性曲线越重合,传感器的重复性越好,误差就会越小。
5.分辨力
分辨力是指传感器能够检测出的被测量的最小变化量。当被测量的变化量小于分辨力时,传感器对输入量的变化不会出现任何反应。对数字式仪表而言,如果没有其他说明,可以认为该表的最后一位所表示的数值就是它的分辨力。分辨力如果以满量程输出的百分数表示时,则称为分辨率。
6.稳定性
稳定性是指传感器在一个较长的时间内保持其性能参数的能力。
稳定性一般是在室温条件下经过一个定时间的间隔后(比如一天、一个月或者一年),传感器此时的输出与起始标定时的输出之间的差异来表示,这种差异称为稳定性误差。稳定性误差通常可由相对误差和绝对误差表示。
7.漂移
漂移是指在外界的干扰下,在一定时间内,传感器输出量发生与输入量无关、不需要的变化。通常包括零点漂移和灵敏度漂移,如图1-8所示。产生漂移的主要原因有两个:一是仪器自身参数的变化;另一个是周围环境导致输出的变化。零点漂移或灵敏度漂移又可分为时间漂移和温度漂移。时间漂移是指在规定的条件下,零点漂移或灵敏度漂移随时间的缓慢变化。温度漂移是指当环境温度变化时引起的零点漂移或灵敏度漂移。
二、动态特性
传感器的动态特性就是当输入信号随时间变化时输入与输出的响应特性,通常要求传感器能够迅速准确地响应和再现被测信号的变化,这也是传感器的重要特性之一。
在评价传感器的动态特性时,最常用的输入信号为阶跃信号和正弦信号,与其对应的方法为阶跃响应法和频率响应法。
1.阶跃响应法
研究传感器的动态特性时,在时域状态中分析传感器的响应和过渡过程被称为时域分析法,这时传感器对输入信号的响应就称为阶跃响应。如图1-9所示为阶跃响应特性曲线。
衡量传感器阶跃响应特性的几项指标如下:
(1)最大超调量σP就是阶跃响应特性曲线偏离稳态值的最大值。常用百分数表示。
(2)延滞时间td是指阶跃响应特性曲线达到稳态值的50%所需的时间。
(3)上升时间tr是指阶跃响应特性曲线从稳态值的10%上升到90%所需的时间。
(4)峰值时间tp是指阶跃响应特性曲线从稳态值的零上升到第一个峰值所需的时间。
(5)响应时间ts是指阶跃响应特性曲线到达与稳态值之差不超过±(5%~2%)所需要的时间。(6)稳态误差ess是指期望的稳态输出量与实际的稳态输出量之差,控制系统的稳态误差越小说明控制精度越高。
衡量传感器频率响应特性的几项指标如下:
(1)频带:传感器的增益保持在一定频率范围内,这一频率范围称为传感器的频带或通频带,对应有上截止频率和下截止频率。
(2)时间常数:可用时间常数τ来表征传感器单自由度一阶系统的动态特性。时间常数τ越小,频带越宽。
(3)固有频率:传感器单自由度二阶系统的固有频率可用ωn来表征其动态特性。