自然语言处理(三): Text Classification

本文介绍了文本分类的基本概念和常见任务,如主题分类和情感分析。讨论了多种分类算法的优缺点,包括朴素贝叶斯、逻辑回归、支持向量机、决策树、随机森林和神经网络,并强调了超参数调优的重要性。此外,还提到了评估指标如准确率、精确率、召回率和F1分数。最后指出,良好的数据注释和丰富的数据集对于取得好结果至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. Classification

1.1 Text Classification Tasks

2. Algorithms for Classification

2.1 Choosing a Classification Algorithm

2.2 Naïve Bayes

2.3 Logistic Regression

2.4 Support Vector Machines

2.5 K-Nearest Neighbour

2.6 Decision tree

2.7 Random Forests

2.8 Neural Networks

​编辑

2.9 Hyper-parameter Tuning

3. Evaluation

3.1 Accuracy

3.2 Precision & Recall

3.3 F(1)-score

4. A Final Word


1. Classification

Input

  • A document d
    • Often represented as a vector of features 通常表示为一个特征向量
  • A fixed output set of classes C = {c1,c2,…ck}
    • Categorical, not continuous (regression) or ordinal (ranking) 分类的,不是连续的(回归)或顺序的(排名)。

Output

  • A predicted class c ∈ C

1.1 Text Classification Tasks

一些常见的例子

  • 主题分类 Topic classification
  • 情感分析 Sentiment analysis
  • 本土语言识别 Native-language identification
  • 自然语言推理 Natural language inference
  • 自动事实核查 Automatic fact-checking
  • 释义 Paraphrase

输入可能不是一个长的文件

  • 句子或推文级情感分析

2. Algorithms for Classification

2.1 Choosing a Classification Algorithm

  • Bias vs. Variance
    • Bias: assumptions we made in our model 我们在模型中所作的假设
    • Variance: sensitivity to training set 对训练集的敏感性
  • Underlying assumptions, e.g., independence
  • Complexity
  • Speed

2.2 Naïve Bayes

Pros:

  • Fast to train and classify
  • robust, low-variance -> good for low data situations
  • optimal classifier if independence assumption is correct
  • extremely simple to implement.

Cons:

  • Independence assumption rarely holds
  • low accuracy compared to similar me
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值