描述:
设(a,m) = 1 , d0 = &m(a) ,则ak ≡ 1 (mod m) 当且仅当 d0 | k
证明:
两个方向证明:
-
通过ak ≡ 1 (mod m)来证明d0 | k
开始:^ _ ^ 我们设k = qd0 + r0(0 <= r0 < d)所以我们有ak = aqd0+r0 = aqd0 + ar0,因为我们有ak≡1,aqd0≡1。所以可以得到ar0≡1。我们有d0的最小性(也就是由0 <= r0 < d得到r0越小d就越小)所以d0 | k ,得证! -
我们由d0 | k得到ak ≡ 1 (mod m)
d0 | k 得到 k = qd0,所以有ak = aqd0 ,因为aqd0 ≡ 1 (mod m),所以ak ≡ 1 (mod m),得证!
吐槽一下!在博客上写数学证明真的不好写!嘿嘿