阶的一个定理证明

描述:

设(a,m) = 1 , d0 = &m(a) ,则ak ≡ 1 (mod m) 当且仅当 d0 | k

证明:

两个方向证明:

  1. 通过ak ≡ 1 (mod m)来证明d0 | k
    开始:^ _ ^ 我们设k = qd0 + r0(0 <= r0 < d)所以我们有ak = aqd0+r0 = aqd0 + ar0,因为我们有ak≡1,aqd0≡1。所以可以得到ar0≡1。我们有d0的最小性(也就是由0 <= r0 < d得到r0越小d就越小)所以d0 | k ,得证!

  2. 我们由d0 | k得到ak ≡ 1 (mod m)
    d0 | k 得到 k = qd0,所以有ak = aqd0 ,因为aqd0 ≡ 1 (mod m),所以ak ≡ 1 (mod m),得证!

吐槽一下!在博客上写数学证明真的不好写!嘿嘿

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值