数论
unomit
我所思,我所想呀
展开
-
关于x模m的逆元,以及模运算
文章目录逆元模运算逆元首先我们来了解什么是逆元;加法中一个元素的逆元就是它的负数,因为单位元是0;乘法中的逆元就是 x*y ≡ 1 mod m 则称y为x的逆元。x的逆元存在有一个条件,即x和m的最大公因子为1,为什么呢?因为我们的辗转相除法有一个定理,xp + mq = 1。这里x和m的最大公因子为1。由这个我们可以得到xp mod m = 1即xp ≡ 1 mod m 这时我们就可以得到x的逆元为p。但此时x和m必须互素。(其实真实的证明我也不会,网上搜也好像没找到)模运算我们一般.原创 2021-04-16 10:25:10 · 2800 阅读 · 0 评论 -
阶的一个定理证明
描述:设(a,m) = 1 , d0 = &m(a) ,则ak ≡ 1 (mod m) 当且仅当 d0 | k证明:两个方向证明:通过ak ≡ 1 (mod m)来证明d0 | k开始:^ _ ^ 我们设k = qd0 + r0(0 <= r0 < d)所以我们有ak = aqd0+r0 = aqd0 + ar0,因为我们有ak≡1,aqd0≡1。所以可以得到ar0≡1。我们有d0的最小性(也就是由0 <= r0 < d得到r0越小d就越小)所以d0 | k ,原创 2020-11-19 22:22:21 · 199 阅读 · 0 评论 -
同余方程组有解定理及其证明
其实这个定理我也不知道叫什么名字,就自己起了个名字。定理描述:设m1,m2为整数,m是m1,m2的最小公倍数,则同余方程组:x ≡ a1 (mod m1)x ≡ a2 (mod m2)有解的充分必要条件是(m1,m2)|a1-a2,如果这个条件成立则方程组有且仅有一个小于m的非负整数解。证明:设d = (m1,m2)1.我们先来证明一下充分性。①.由同余方程组可得 x = km1 + a1,x = km2 + a2,所以a1 - a2 = km2 - km1。②.因为d | m1,d | m原创 2020-10-29 20:47:50 · 5191 阅读 · 3 评论 -
素性定理描述及其证明
素性定理1.描述: 当p为素数时,p | ab 则 p | a 或者 p | b。2.证明: 如果p | a时成立结论成立。如果p不整除a时,就说明p和a没有公因子即(p,a) = 1。 可以得到 px + ay = 1。所以 pbx + aby = b。因为 b 可以被p和ab线性表示,并且p|ab,p|p,所以可以得到p|b。得证!3.解释: 关于(p,a) => px + ay = 1。我们可以由带余除法得到 Ⅰ.由辗转相除法可以得到(a,b) = (b,r0) = (r0,r1)原创 2020-10-22 22:27:43 · 655 阅读 · 1 评论 -
素数有无限个的证明
二.证明素数有无限个证明如下: 1.假设有有限个素数分别为p1,p2,p3 … p(t) 2.这时候存在 n = p1p2…*p(t) + 1 3.任意的p(i) (1<= i <=t)都不能整除n,所以任意的p(i)都不是n的素因子。 4.根据整数的分解定理n存在至少一个素因子但不是p(i)中的素数,与1中的假设矛盾,所以可以得出素数有无限个。...原创 2020-10-20 22:29:59 · 1141 阅读 · 1 评论