Leetcode-5 动态规划解最长回文子串

博客围绕在字符串中找最长回文子串展开,给出示例及来源。解决方法采用动态规划,其时间复杂度为O(n2)。一个串是否为回文串取决于删去两边各一个字符的子串是否为回文串,还提及长度为1和2时的边界情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。

示例 1:

输入: “babad”
输出: “bab”
注意: “aba” 也是一个有效答案。

示例 2:

输入: “cbbd”
输出: “bb”

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-palindromic-substring

解决方法:
我这里我使用的是动态规划可能时间复杂度O(n2)有点大,但是我是正在做这个。

  • 我们想到一个串是否为回文串取决于它删去两边各一个字符的子串是否为回文串。
  • 然后我们想一下边界情况。当串的长度为1它必然是一个回文串,为2时它是否为回文串取决于这两个字符是否相等。
  • 代码中的i j 可以理解为串左右两边的指针,l可以理解为间距。
#include <iostream>
#include <cstring>
using namespace std;
string Slove(string s);

int main(){
	string s;
	cin >> s;
	cout<<Slove(s);
	return 0;
}

string Slove(string s){
	int n = s.size();
	int dp[n][n];
	string ans;
	//这里我想的是l是i和j的间距
	for(int l=0;l<n;l++){
		for(int i=0;i+l<n;i++){
			int j = i + l;
			//间距为0即子串为一个字符的时候,所以都是回文子串
			if(l==0) 
				dp[i][j] = 1;
			//间距为1,即为两个字符,只需要判断这两个字符是否相等即可
			else if(l==1) 
				dp[i][j] = (s[i]==s[j]);
			//当子串的大小大于2时,判断这个串的左右两边字符是否相等,以及除去这两个字符后的字串是否为回文串
			else 
				dp[i][j] = (dp[i+1][j-1] && s[i]==s[j]);
			//如果当前字符串为回文串并且这个串的大小大于所存储的最大值时更新ans
			if(dp[i][j] && l+1>ans.size()){
				ans = s.substr(i,l+1);
			}
		}
	}
	return ans;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值