树的遍历
树的遍历分为前序遍历(根左右)、中序遍历(左根右)、后序遍历(左右根)。
#include <iostream>
#include <cstdio>
using namespace std;
const int Max = 30;
const int NIL = -1;
struct Node
{
int parent, left, right;
};
int n, id, l, r, root;
Node T[Max];
void preParse(int u)//前序遍历
{
if(u==NIL) return;
printf(" %d", u);
preParse(T[u].left);
preParse(T[u].right);
}
void inParse(int u)//中序遍历
{
if(u==NIL) return;
inParse(T[u].left);
printf(" %d", u);
inParse(T[u].right);
}
void postParse(int u)//后序遍历
{
if(u==NIL) return;
postParse(T[u].left);
postParse(T[u].right);
printf(" %d", u);
}
int main()
{
scanf("%d", &n);
for(int i=0; i<n; i++)//初始化树
{
T[i].parent = T[i].left = T[i].right = NIL;
}
for(int i=0; i<n; i++)//建树
{
scanf("%d %d %d", &id, &l, &r);
T[id].left = l;
T[id].right = r;
if(l!=NIL)
T[l].parent = id;
if(r!=NIL)
T[r].parent = id;
}
for(int i=0; i<n; i++)//找根节点
{
if(T[i].parent==NIL)
{
root = i;
break;
}
}
printf("Preorder\n");
preParse(root);
printf("\n");
printf("Inorder\n");
inParse(root);
printf("\n");
printf("Postorder\n");
postParse(root);
printf("\n");
return 0;
}
树的重建
根据前序遍历和中序遍历输出后序遍历。
- find函数有三个参数, 分别代表 (起点, 终点后一位, 要找的数)
返回一个地址。 - distance函数是返回容器中两个地址(迭代器)之间的距离。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
int n, pos;
vector<int> pre, in, post;
void rec(int l, int r)//重建树
{
if(l>=r) return;
int root = pre[pos++];//根据前序遍历的根节点划分中序遍历的左右子树
int m = distance(in.begin(), find(in.begin(), in.end(), root));
rec(l, m);//重建左子树
rec(m+1, r);//重建右子树
post.push_back(root);//重点:后序顺序存入结点
}
void solve()
{
pos = 0;//作pre数组的下标
rec(0, n);
for(int i=0; i<n; i++)
{
if(i) cout << " ";
cout << post[i];
}
cout << endl;
}
int main()
{
cin >> n;
int s1, s2;
for(int i=0; i<n; i++)//前序遍历数组
{
cin >> s1;
pre.push_back(s1);
}
for(int i=0; i<n; i++)//后序遍历数组
{
cin >> s2;
in.push_back(s2);
}
solve();
return 0;
}