北京大学2018计算机学科夏令营上机考试

本文精选了多个算法竞赛题目,包括日期计算、回文子串识别、BFS应用、完全背包问题、逆序对计数、最短路径寻找、食物链分析及DFS应用。涵盖了模拟、贪心、DP、图论等多种算法,提供了详细的解题思路和代码实现。
摘要由CSDN通过智能技术生成


参考博文: 【题目自解】北京大学2018计算机学科夏令营上机考试

题目名称题目类型测试情况
A 计算两个日期之间的天数模拟题AC
B 回文子串模拟题AC
C The Die Is CastBFS
D Euro EfficiencyDP
E 重要逆序对模拟题/归并WR
F Tram最短路AC
G 食物链并查集WR
H DFS spanning tree
A 计算两个日期之间的天数

思路:输入sy sm sd ey em ed。则先计算sy-1-1到ey-1-1的天数之差,然后再计算减去在sy年中的天数并加上在ey年中的天数。

代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;

int P_months[15] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int sy, sm, sd;
int ey, em, ed;

bool is_R(int year)
{
    if(year%100==0 && year%400!=0) return 0;
    if(year%4==0) return 1;
    return 0;
}
int main()
{
    cin >> sy >> sm >> sd;
    cin >> ey >> em >> ed;
    int year = sy, flagm = 1, R = 0;
    int sumy = 0, sum1 = 0, sum2 = 0;
    //模拟得打sy-1-1到ey-1-1的天数之差
    while(year<ey)
    {
        if(is_R(year)) sumy += 366;
        else           sumy += 365;
        year++;
    }
    int ed1 = sm, ed2 = em;
    //得到sm-sd的天数
    for(int i=0; i<ed1-1; i++)
    {
        sum1 += P_months[i];
        if(i==1 && is_R(sy)) sum1 += 1;
    }
    sum1 += sd;
    //得到em-ed的天数
    for(int i=0; i<ed2-1; i++)
    {
        sum2 += P_months[i];
        if(i==1 && is_R(ey)) sum2 += 1;
    }
    sum2 += ed;
    //sumy加上em-ed的天数并减去sm-sd的天数
    cout << sumy + sum2 - sum1 << endl;
    return 0;
}
B 回文子串

思路:本题目简单在数据范围不大,不超过500,则可以使用n^2的复杂度。

代码:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <vector>
using namespace std;

vector<string> v;

//检验是否是回文串
void is_H(string s, int st, int len)
{
    string ans = "";
    int l = st, r = st+len-1, flag = 1;
    if(r>s.size()-1) return;
    while(l<r)
    {
        if(s[l]!=s[r])
        {
            flag = 0;
            break;
        }
        l++, r--;
    }
    if(flag)
    {
        for(int i=st; i<st+len; i++)
            ans += s[i];
    }
    else return;
    cout << ans << endl;
}
int main()
{
    string s;
    cin >> s;
    for(int i=2; i<=s.size(); i++)//i是回文串的长度
    {
        for(int st = 0; st<=s.size()-i; st++)//st是回文串起始的下标
        {
           is_H(s, st, i);
        }
    }
    return 0;
}
C The Die Is Cast

思路:我使用了双层BFS,找到后先BFS遍历所有非’.'的位置,在BFS * 的过程中,如果遍历到未遍历的X则在X的基础上BFS遍历X,并替换遍历到的X为。记录开始遍历X的次数。

代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <algorithm>
#include <vector>
using namespace std;

int w, h;
string G[55];
int vis[55][55];
int dx[5] = {0, 0, 1, -1};
int dy[5] = {1, -1, 0, 0};
vector<int> v;

struct Node
{
    int x, y;
    Node(int x=-1, int y=-1):x(x), y(y){}
};

void bfs1(Node st)
{
    queue<Node> q1;
    q1.push(st);
    G[st.x][st.y] = '*';//替换,方便之后遍历
    while(!q1.empty())
    {
        Node u = q1.front(); q1.pop();
        for(int i=0; i<4; i++)
        {
            int x = u.x+dx[i], y = u.y+dy[i];
            if(x<0 || x>=h || y<0 || y>=w) continue;
            if(!vis[x][y] && G[x][y]=='X')
            {
                q1.push(Node(x, y));
                G[x][y] = '*';
            }
        }
    }
}

void bfs0(Node st)
{
    int sum = 0;
    queue<Node> q;
    q.push(st);
    vis[st.x][st.y] = 1;
    while(!q.empty())
    {
        Node u = q.front(); q.pop();
        for(int i=0; i<4; i++)
        {
            int x = u.x+dx[i], y = u.y+dy[i];
            if(x<0 || x>=h || y<0 || y>=w) continue;
            //注意:X可能会阻断*,所以需要先处理X然后将X变为*,使得整个图依然连通
            if(!vis[x][y] && G[x][y]=='X')
            {
                bfs1(Node(x, y));
                q.push(Node(x, y));
                sum++;
            }
            if(!vis[x][y] && G[x][y]=='*')
            {
                vis[x][y] = 1;
                q.push(Node(x, y));
            }
        }
    }
    v.push_back(sum);
}
int main()
{
    //freopen("input.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int kase = 1;
    while(scanf("%d%d", &w, &h)!=EOF)
    {
        getchar();
        if(w+h==0) break;
        for(int i=0; i<h; i++)
            getline(cin, G[i]);
        v.clear();
        memset(vis, 0, sizeof(vis));
        for(int i=0; i<h; i++)
        {
            for(int j=0; j<w; j++)
            {
                if(G[i][j]=='*' && !vis[i][j])
                {
                    bfs0(Node(i, j));
                }
            }
        }
        printf("Throw %d\n", kase++);
        sort(v.begin(), v.end());
        for(int i=0; i<v.size(); i++)
        {
            if(i) printf(" ");
            printf("%d", v[i]);
        }
        printf("\n\n");
    }
    return 0;
}
D Euro Efficiency

参考博文:POJ 1252 Euro Efficiency(完全背包, 找零问题, 二次DP)
思路:首先可以得知是完全背包,且是找零问题。可以使用两次DP来解决问题。第一次求没有找零时的状态值,第二次当找零时更新状态值。

  • 状态:令 dp[v] 表示拼出总面额为 v 的钱所需要的最少硬币数。
  • 状态转移方程:求解一步完全背包, 这一步假设不允许找零, dp[v] = min(dp[v], dp[v-w[i]]+1),(第i个硬币可以使用或不使用)。
    求解找零的最优解, dp[v] = min(dp[v], dp[v+w[i]]+1),(表示使用第i个硬币找零或不找零)。
  • 初始化:dp[*] = INF。

代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXN = 110;
const int MAXM = 100*20;
const int n = 6;
int money[MAXN];
int dp[MAXM+10];
/*
 *  不允许找钱, 前 i 个 coin 相加恰好为 x money
 *  最大的money 总额可能会超过 100
 *  完全背包, 每件物品可以放任意多次, 第二层循环(j) 从小到大遍历
 */
void withoutChange() {
    memset(dp, 0x3f, sizeof(dp));
    dp[0] = 0;  // "恰好"
    for(int i = 0; i < n; i++) {
        for(int j = money[i]; j <= MAXM; j ++) {
            dp[j] = min(dp[j], dp[j-money[i]]+1);
        }
    }
}
/*
 *  允许找钱
 *  对 i, 枚举找回的钱
 *  允许找钱, 同时意味着一方给的钱可能会超过 100, 题目已经说明, 每组数据都包含1, 所以, 数据若是比较苛刻的话, maxn 得设置为 99 * 50
 *  状态转移方程的方向变了, 同时完全背包要求等式右边是新的数据, 因此, j 的遍历顺序为从大到小
 *  dp[v] = min(dp[v], dp[v+w[i]]) 对于第 i 个硬币, 要么作为零钱, 要么不作为, 反过来, 好难想
 */
void withChange() {
    for(int i = 0; i < n; i ++) {
        for(int j = MAXM-money[i]; j >= 1; j --) {
            dp[j] = min(dp[j], dp[j+money[i]]+1);
        }
    }
}

int main() {
    //freopen("E:\\Copy\\ACM\\测试用例\\in.txt", "r", stdin);
    int testCase;
    scanf("%d", &testCase);
    while(testCase--) {
        for(int i = 0; i < n; i ++) {
            scanf("%d", &money[i]);
        }
        float avg_coin = 0.0;
        int max_coin = 0;
        // first step
        withoutChange();
        // second step
        withChange();
        for(int i = 1; i <= 100; i ++) {
            avg_coin += dp[i];
            max_coin = max(max_coin, dp[i]);
        }
        avg_coin = avg_coin/100;
        printf("%0.2f %d\n", avg_coin, max_coin);
    }
    return 0;
}
E 重要逆序对

思路:本题难在数据范围比较大,不能使用n^2的复杂度。
参考博文:2018计算机学科夏令营上机考试E:重要逆序对(归并排序)
代码:

F Tram

思路:图论中最短路,主要在邻接矩阵的构造。在邻接矩阵的构建过程当中,不需要旋转的路径设置为0,需要旋转的路径设置为1,不可达的路径为-1,然后采用dijstra算法即可。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;

const int MAX = 105;
const int INF = 1<<29;
int G[MAX][MAX], d[MAX], vis[MAX], N;

int dijstra(int A, int B)
{
    if(A==B) return 0;
    fill(d, d+MAX, INF);
    memset(vis, 0, sizeof(vis));
    d[A] = 0;
    while(1)
    {
        int Min = INF, u;
        for(int i=1; i<=N; i++)
        {
            if(!vis[i] && Min>d[i])
            {
                u = i;
                Min = d[i];
            }
        }
        if(Min==INF) return -1;
        if(u==B) return Min;
        vis[u] = 1;
        for(int i=1; i<=N; i++)
        {
            if(!vis[i] && G[u][i]!=-1 && d[i]>d[u]+G[u][i])
            {
                d[i] = d[u]+G[u][i];
            }
        }
    }
}
int main()
{
    int A, B, m, a;
    memset(G, -1, sizeof(G));
    cin >> N >> A >> B;
    for(int i=1; i<=N; i++)
    {
        cin >> m;
        for(int j=1; j<=m; j++)
        {
            cin >> a;
            if(j>1) G[i][a] = 1;
            else  G[i][a] = 0;
        }
    }
    cout << dijstra(A, B) << endl;
    return 0;
}
G 食物链

思路:这道题之前在POJ上做了好多遍,本次之所以WR,居然是一个小括号括错了位置,可见在机试中任何情况都有可能出现,一定要避免不必要的失误。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

const int M = 50001;
const int MAX = 3*M;
int father[MAX], Rank[MAX];

void Init(int MX)
{
    for(int i=0; i<=MX; i++)
    {
        father[i] = i;
        Rank[i] = 1;
    }
}
int findRoot(int x)
{
    int r = x;
    while(r!=father[r]) r = father[r];
    int j = x, i;
    while(j!=r)
    {
        i = father[j];
        father[j] = r;
        j = i;
    }
    return r;
}
void join(int x, int y)
{
    int fx = findRoot(x), fy = findRoot(y);
    if(fx!=fy)
    {
        if(Rank[fx]>Rank[fy]) father[fy] = fx;
        else                  father[fx] = fy;
        if(Rank[fx]==Rank[fy]) Rank[fy]++;
    }
}
bool same(int x, int y)
{
    return findRoot(x)==findRoot(y);
}

int main()
{
    int N, K, D, X, Y;
    int sum = 0;
    cin >> N >> K;
    int MX = 3*N;
    Init(MX);
    while(K--)
    {
        cin >> D >> X >> Y;
        if(X<=0 || Y<=0 || X>N || Y>N) sum++;
        else if(D==1)
        {
            if(same(X, Y+N) || same(X+N, Y))
            {
                sum++;
                continue;
            }
            join(X, Y);
            join(X+N, Y+N);
            join(X+2*N, Y+2*N);
        }
        else if(D==2)
        {
            if(same(X, Y) || same(X+N, Y))
            {
                sum++;
                continue;
            }
            join(X, Y+N);
            join(X+N, Y+2*N);
            join(X+2*N, Y);
        }
    }
    printf("%d\n", sum);
    return 0;
}
H DFS spanning tree
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值