最近看的行人再识别文章概要

本文提出了一种改进的深度学习架构,用于行人再识别任务,通过引入Cross-Input Neighborhood Differences layer和Across Patch Features layer提高了在CUHK01、CUHK03和VIPeR等benchmark上的性能,并显示了在小数据集上通过预训练和微调也能达到state-of-the-art的效果。
摘要由CSDN通过智能技术生成

[1] Ejaz Ahmed, Michael Jones, Tim K.Marks.  An Improved Deep Learning Architecture for Person Re-Identification. In CVPR 2015.

  改变神经网络的架构,提高在benchmark上的performance 使用dnn来做行人再识别(pedestrian re-identification),引入了两个新的layer—Cross-Input Neighborhood Differences layer、Across Patch Features

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值