OCR文字识别(1)

一. 研究背景        文字识别是CV领域应用最广,最接地气的方向之一,从证件识别到智慧医疗,从拍照识别到无人驾驶,从车牌识别到物流分拣,几乎涵盖了AI的所有场景。        通常文字识别分成两步,文本位置检测 + 识别。     > 论文参考:      ...

2018-09-20 00:37:12

阅读数:1191

评论数:1

基础网络架构探究之DiracNets

CNN研究者总是面临一个共同的话题:如何提升神经网络的表达能力?分两个方向去探讨:1)拉长增加网络层数是最直观的一种方法,但这种方法所面临的是 梯度消失问题,网络越深,梯度的回传越困难。基于此,MSRA提出了ResNet,通过skipconnection的方式,通过残差思想很好的解决了这个问题。可...

2018-03-28 02:11:08

阅读数:2645

评论数:1

Facebook开源检测工具包 Detectron (by Caffe2)

一. Detectron 特征        大名鼎鼎的 FAIR 开发的软件包,可以从【github】了解一下。        个人感觉比较有用的是 基于 ResNet 基础框架的 Faster RCNN和Mask RCNN。        Detectron 基于 Caffe2(貌似被诟病的不...

2018-02-02 23:31:55

阅读数:4550

评论数:0

TensorRT深度学习推理框架介绍

一.  产生背景       深度学习的发展带动了一批深度学习框架,caffe、tensorflow、pytorch等,对于计算量庞大的CNN,效率一直是大家所关注的,接触过深度网络压缩的同学应该知道网络压缩最关键的两个思路,剪枝和量化。       TensorRT就是量化,将FP32位权值数据...

2018-01-16 23:52:37

阅读数:10478

评论数:1

人群密度估计-Crowd Density

一. 应用背景      在安防大背景下,对敏感区域人流量的管控是一个重要的课题,防止人群骚乱、踩踏现象的发生,对非预期的人员汇聚进行预警等等,最常用的方法是检测到每个目标,然后借助 Perspective 矩阵完成到实际位置的映射,当然,在目标很难检测的情况下(密度极大、遮挡严重),基于回归的方...

2017-12-18 23:47:49

阅读数:5900

评论数:2

语义分割网络之PSPnet

一.提出背景       基于FCN全卷积网络的分割面临诸多问题,这篇文章从多尺度入手,提出了金字塔模型来提取多尺度的信息,达到了 State-of-the-art 的结果       论文:PSPnet:Pyramid Scene Parsing Network 【点击下载】       Caf...

2017-11-14 22:53:55

阅读数:7105

评论数:3

深度网络模型压缩 - CNN Compression

一. 技术背景       一般情况下,CNN网络的深度和效果成正比,网络参数越多,准确度越高,基于这个假设,ResNet50(152)极大提升了CNN的效果,但inference的计算量也变得很大。这种网络很难跑在前端移动设备上,除非网络变得简洁高效。       基于这个假设,有很多处理方法,...

2017-10-13 23:22:39

阅读数:6827

评论数:0

视频人员行为识别(Action Recognition)

一. 提出背景       目标:给定一段视频,通过分析,得到里面人员的动作行为。       问题:可以定义为一个分类问题,通过对预定的样本进行分类训练,解决一个输入视频的多分类问题。       这里提出的问题是简单的图片(视频)分类问题,该问题的前提条件是:场景目标为单人,并且占据图片比较大...

2017-09-19 21:28:28

阅读数:7441

评论数:3

Mark 一些有意思的深度学习方向

1. VQA       Visual Question Answering,给出一张图片,就该图片提出任何问题?自动get到你所期望的答案。这属于Visual Reasoning 的范畴,学者们不满足于传统的图像识别、分割、Caption等工作,尝试去挖掘更高级的机器推理能力。来看解决思路,CN...

2017-09-08 22:35:56

阅读数:4381

评论数:0

NoScope:极速视频目标检测

一.提出背景       在基于CNN的方法提升到一个很高的准确度之后,效率又成为人们所关注的话题,目前兼备准确度和效率的方法包括 SSD、YOLO v2,其检测效率通常能到达 30-100FPS,而这里面的代价就是上万块的显卡,这个代价是相当高的。当下视频获取设备(CCTV摄像头)成本通常是几百...

2017-08-29 23:22:04

阅读数:6169

评论数:0

DenseNet:更接近于真实神经网络的跨层连接

一. 提出背景       论文:Densely Connected Convolutional Networks 【点击下载】       Caffe代码:【Github】       受 Highway、ResNet 等算法思路的启发,提出一种跨层的连接网络,思路非常简单,直接上图:     ...

2017-08-16 22:11:08

阅读数:6174

评论数:2

对抗网络之目标检测应用:A-Fast-RCNN

对抗网络之目标检测应用:A-Fast-RCNN       论文:A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection 【点击下载】       Caffe代码:【Github】一. 深度学习正确的打开方式...

2017-08-05 00:21:16

阅读数:4730

评论数:0

轻量级网络 - PVANet & SuffleNet

一. PVANet       论文:PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection    【点击下载】       Caffe代码:【Github】       设计了一种轻量级的网络,取名叫...

2017-07-28 23:56:22

阅读数:5959

评论数:3

特征金字塔网络 FPN

一. 提出背景       论文:Feature Pyramid Networks for Object Detection  【点击下载】       在传统的图像处理方法中,金字塔是比较常用的一种手段,像 SIFT 基于金字塔做了多层的特征采集,对于深度网络来讲,其原生的卷积网络特征决定了天然...

2017-07-21 22:18:10

阅读数:6197

评论数:1

Faster R-CNN改进篇(二): RFCN ● RON

@改进1:RFCN       论文:R-FCN: Object Detection via Region-based Fully Convolutional Networks    【点击下载】       MXNet代码:【Github】一. 背景介绍       RCNN 在目标检测上取得了...

2017-07-15 01:15:40

阅读数:11539

评论数:2

基于视频的目标检测

一. 提出背景       目标检测在图像处理领域有着非常大的占比,过去两年,深度学习在Detection的持续发力,为这个领域带来了变革式的发展:一方面,从 RCNN 到 Fast RCNN,再到 Faster RCNN,不断刷新 mAP;另一方面,SSD、YOLO 则是将性能提高到一个非常高的...

2017-07-11 23:05:04

阅读数:13793

评论数:5

深度学习的研究方向和发展趋势

一. 人工智能应用领域1. 计算机视觉    生物特征识别:人脸识别、步态识别、行人ReID、瞳孔识别;    图像处理:分类标注、以图搜图、场景分割、车辆车牌、OCR、AR;    视频分析:安防监控、智慧城市;2. 自然语言处理    语音识别(Siri、Cortana、讯飞)、文本数据挖掘、...

2017-07-07 23:07:22

阅读数:13461

评论数:15

Faster R-CNN改进篇(一): ION ● HyperNet ● MS CNN

一. 源起于Faster       深度学习于目标检测的里程碑成果,来自于这篇论文:       Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal networ...

2017-07-02 23:31:36

阅读数:9639

评论数:4

目标检测 - Tensorflow Object Detection API

一. 找到最好的工具       “工欲善其事,必先利其器”,如果你想找一个深度学习框架来解决深度学习问题,TensorFlow 就是你的不二之选,究其原因,也不必过多解释,看过其优雅的代码架构和工程化实现之后,相信这个问题不会有人再提,这绝非 Caffe an so on 所能比拟的。     ...

2017-06-25 23:04:05

阅读数:26068

评论数:18

迁移学习:经典算法解析

一. 了解迁移学习        迁移学习(Transfer Learning)目标是将从一个环境中学到的知识用来帮助新环境中的学习任务。             > The ability of a system to recognize and apply knowledge and s...

2017-06-16 23:08:41

阅读数:33630

评论数:9

提示
确定要删除当前文章?
取消 删除