题目描述
尼克每天上班之前都连接上英特网,接收他的上司发来的邮件,这些邮件包含了尼克主管的部门当天要完成的全部任务,每个任务由一个开始时刻与一个持续时间构成。
尼克的一个工作日为N分钟,从第一分钟开始到第N分钟结束。当尼克到达单位后他就开始干活。如果在同一时刻有多个任务需要完成,尼克可以任选其中的一个来做,而其余的则由他的同事完成,反之如果只有一个任务,则该任务必需由尼克去完成,假如某些任务开始时刻尼克正在工作,则这些任务也由尼克的同事完成。如果某任务于第P分钟开始,持续时间为T分钟,则该任务将在第P+T-1分钟结束。
写一个程序计算尼克应该如何选取任务,才能获得最大的空暇时间。
输入格式:
输入数据第一行含两个用空格隔开的整数N和K(1≤N≤10000,1≤K≤10000),N表示尼克的工作时间,单位为分钟,K表示任务总数。
接下来共有K行,每一行有两个用空格隔开的整数P和T,表示该任务从第P分钟开始,持续时间为T分钟,其中1≤P≤N,1≤P+T-1≤N。
输出格式:
输出文件仅一行,包含一个整数,表示尼克可能获得的最大空暇时间。
输入样例#1:
15 6
1 2
1 6
4 11
8 5
8 1
11 5
输出样例#1:
4
思路 : 一眼看去就是dp题,而且很容易想到 用 dp[i] 代表 从 1 -> i 的最大时间 ,但是转移方式什么呢 看起来不好建立 ,众所周知dp具有无后效性 ,和具有最优子结构的特性 ,但是显然我们从前往后遍历的话 ,前面的决策是会受到后面的影响的 ,因此我们从后往前进行动态规划
if 此刻没有任务 :
dp[i] = dp[i+1] + 1;
else :
for (int j = 1 ; j <= sum[i] ; j ++ ) // sum[j] 表示以 j 为起点的事件
dp[i] = max(dp[i] ,dp[i + ss[pos].length] );
AC code:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 1e4+50;
int dp[maxn] ,n ,m ,sum[maxn] ;
struct node {
int st ,length ;
}ss[maxn];
int cmp(node x,node y) {
return x.st > y.st ;
}
int main() {
int pos = 1;
memset(sum ,0 ,sizeof(sum) ) ;
memset(dp ,0 ,sizeof(dp) ) ;
cin >> n >> m;
for (int i = 1 ; i <= m ; i ++ ) {
scanf("%d %d",&ss[i].st ,&ss[i].length ) ;
sum[ss[i].st] ++;
} sort(ss + 1 ,ss + m + 1 ,cmp );
for (int i = n ; i >= 1 ; i -- ) {
if ( sum[i] == 0 ) {
dp[i] = dp[i + 1] + 1;
} else {
for (int j = 1 ; j <= sum[i] ; j ++ ) {
dp[i] = max(dp[i],dp[i + ss[pos].length]) ;
pos ++ ;
}
}
}
printf("%d\n",dp[1]);
return 0;
}