小希的迷宫
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
Input输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
Output对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
6 8 5 3 5 2 6 4 5 6 0 0 8 1 7 3 6 2 8 9 7 5 7 4 7 8 7 6 0 0 3 8 6 8 6 4 5 3 5 6 5 2 0 0 -1 -1Sample Output
Yes Yes No
Time limit1000 msMemory limit32768 kBOSWindows
思路:并查集模板题。
在给出点的min值和max值之间操作,但是其中的点可能没有出现。当 a=0,b=0时 输出Yes。(莫名其妙WA了好几次)
#include <cstdio>
#include <functional>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=1e6+10;
const int inf=0x7fffffff;
int fa[maxn];
bool vis[maxn];
void init(){
for (int i=0;i<maxn;i++) fa[i]=i;
}
int fnd(int x){
return x==fa[x]?x:fa[x]=fnd(fa[x]);
}
bool Union(int x,int y)
{
int fx=fnd(x),fy=fnd(y);
if(fx!=fy){
fa[fy]=fx;
return true;
}
return false;
}
int main()
{
int a,b;
while(scanf("%d%d",&a,&b),a!=-1&&b!=-1){
init();
memset(vis,false,sizeof(vis));
if(a==0&&b==0){
printf("Yes\n");
continue;
}
int mi=min(a,b),ma=max(a,b);
Union(a,b);
vis[a]=vis[b]=1;
int fg=0;
while(scanf("%d%d",&a,&b),a+b){
if(Union(a,b)){
vis[a]=vis[b]=1;
mi=min(min(a,b),mi),ma=max(ma,max(a,b));
}
else fg=1;
}
if(fg) {
printf("No\n");
continue;
}
int cnt=0;
for (int i=mi;i<=ma;i++)
{
if(vis[i]&&fa[i]==i) cnt++;
}
if(cnt==1) printf("Yes\n");
else printf("No\n");
}
return 0;
}