kuangbin专题 小希的迷宫

                                小希的迷宫

上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。 
 
Input输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。 
整个文件以两个-1结尾。 
Output对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。 
Sample Input
6 8  5 3  5 2  6 4
5 6  0 0

8 1  7 3  6 2  8 9  7 5
7 4  7 8  7 6  0 0

3 8  6 8  6 4
5 3  5 6  5 2  0 0

-1 -1
Sample Output
Yes
Yes
No


 Time limit1000 msMemory limit32768 kBOSWindows




思路:并查集模板题。

在给出点的min值和max值之间操作,但是其中的点可能没有出现。当 a=0,b=0时 输出Yes。(莫名其妙WA了好几次)


#include <cstdio>
#include <functional>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=1e6+10;
const int inf=0x7fffffff;
int fa[maxn];
bool vis[maxn];
void init(){
    for (int i=0;i<maxn;i++) fa[i]=i;
}
int fnd(int x){
    return x==fa[x]?x:fa[x]=fnd(fa[x]);
}
bool Union(int x,int y)
{
    int fx=fnd(x),fy=fnd(y);
    if(fx!=fy){
        fa[fy]=fx;
        return true;
    }
    return false;
}
int main()
{
    int a,b;
    while(scanf("%d%d",&a,&b),a!=-1&&b!=-1){
        init();
        memset(vis,false,sizeof(vis));
        if(a==0&&b==0){
            printf("Yes\n");
            continue;
        }
        int mi=min(a,b),ma=max(a,b);
        Union(a,b);
        vis[a]=vis[b]=1;
        int fg=0;
        while(scanf("%d%d",&a,&b),a+b){
            if(Union(a,b)){
                vis[a]=vis[b]=1;
                mi=min(min(a,b),mi),ma=max(ma,max(a,b));
            }
            else fg=1;
        }
        if(fg) {
            printf("No\n");
            continue;
        }
        int cnt=0;
        for (int i=mi;i<=ma;i++)
        {
            if(vis[i]&&fa[i]==i) cnt++;
        }
        if(cnt==1) printf("Yes\n");
        else printf("No\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值