子集类上生成的最小σ-代数

要求 σ ( E ) \sigma(\mathfrak{E}) σ(E),我们需要找到 E \mathfrak{E} E 生成的最小 σ \sigma σ-代数。根据定义, σ \sigma σ-代数是一个集族,满足以下条件:

  1. 包含全集 Ω \Omega Ω
  2. 对于任意集合 A A A 属于该集族,补集 A c A^c Ac 也属于该集族。
  3. 对于任意可数个集合 A 1 , A 2 , … A_1, A_2, \ldots A1,A2, 属于该集族,它们的并集 ⋃ i = 1 ∞ A i \bigcup_{i=1}^{\infty} A_i i=1Ai 也属于该集族。

1. 包含全集

由于 E = { A k } \mathfrak{E} = \{A_k\} E={Ak} 是一组两两不交的集合,且可以构造出它们的并:

⋃ k = 0 ∞ A k = Ω , \bigcup_{k=0}^{\infty} A_k = \Omega, k=0Ak=Ω,

因此 σ ( E ) \sigma(\mathfrak{E}) σ(E) 包含全集 Ω \Omega Ω

2. 补集

对于任意集合 A k ∈ E A_k \in \mathfrak{E} AkE,它的补集 A k c A_k^c Akc σ \sigma σ-代数中需要包含。

  • 由于 E \mathfrak{E} E 仅包含不交的集合,它们的补集将包含在 Ω \Omega Ω 中,实际上 A k c A_k^c Akc 可以表示为:

A k c = Ω ∖ A k = ⋃ j ≠ k A j . A_k^c = \Omega \setminus A_k = \bigcup_{j \neq k} A_j . Akc=ΩAk=j=kAj.

因此, σ ( E ) \sigma(\mathfrak{E}) σ(E) 包含所有 A k c A_k^c Akc

3. 可数并

对于任意可数个集合 A i 1 , A i 2 , … A_{i_1}, A_{i_2}, \ldots Ai1,Ai2, 属于 E \mathfrak{E} E,由于这些集合是两两不交的,它们的并集可以表示为:

⋃ j = 1 ∞ A i j . \bigcup_{j=1}^{\infty} A_{i_j}. j=1Aij.

由于不交性,这个并集在 σ ( E ) \sigma(\mathfrak{E}) σ(E) 中。

4. 综合

因此, σ ( E ) \sigma(\mathfrak{E}) σ(E) 包含:

  • 所有的 A k A_k Ak
  • 所有的 A k c A_k^c Akc
  • 所有的可数并集 ⋃ j = 1 ∞ A i j \bigcup_{j=1}^{\infty} A_{i_j} j=1Aij

综合上述,可以得出:

σ ( E ) = { ⋃ k ∈ I A k : I ⊆ N ,且  A k ∈ E ,包括  ∅  和  Ω } . \sigma(\mathfrak{E}) = \left\{ \bigcup_{k \in I} A_k : I \subseteq \mathbb{N} \text{,且 } A_k \in \mathfrak{E} \text{,包括 } \emptyset \text{ 和 } \Omega \right\}. σ(E)={kIAk:IN,且 AkE,包括   Ω}.

实际上, σ ( E ) \sigma(\mathfrak{E}) σ(E) 包含了所有可以通过有限或可数次并、补集操作得到的集合。由于原始集合是两两不交的,因此 σ ( E ) \sigma(\mathfrak{E}) σ(E) 可以视为所有这些集合的并的集合。

结论

最终结果为:

σ ( E ) = { ⋃ k ∈ I A k : I ⊆ N } ∪ { ∅ , Ω } . \sigma(\mathfrak{E}) = \left\{ \bigcup_{k \in I} A_k : I \subseteq \mathbb{N} \right\} \cup \{\emptyset, \Omega\}. σ(E)={kIAk:IN}{,Ω}.

这就是由 E \mathfrak{E} E 生成的最小 σ \sigma σ-代数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高山莫衣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值