式(b)的推导过程如下:
-
初始条件与加速度:
物体在竖直方向(y轴)的初始位置为 y 0 y_0 y0,初始速度分量为 v 0 sin γ 0 v_0 \sin\gamma_0 v0sinγ0,加速度为恒定的 − g -g −g(方向向下)。 -
第一次积分(加速度→速度):
对加速度积分一次得到速度:
y ¨ = − g ⟹ ∫ y ¨ d t = ∫ − g d t ⟹ y ˙ = − g t + C 1 \ddot{y} = -g \implies \int \ddot{y} \, dt = \int -g \, dt \implies \dot{y} = -gt + C_1 y¨=−g⟹∫y¨dt=∫−gdt⟹y˙=−gt+C1
代入初始条件 t = 0 t=0 t=0时, y ˙ ( 0 ) = v 0 sin γ 0 \dot{y}(0) = v_0 \sin\gamma_0 y˙(0)=v0sinγ0,解得积分常数 C 1 = v 0 sin γ 0 C_1 = v_0 \sin\gamma_0 C1=v0sinγ0。
因此,速度表达式为:
y ˙ ( t ) = v 0 sin γ 0 − g t \dot{y}(t) = v_0 \sin\gamma_0 - gt y˙(t)=v0sinγ0−gt -
第二次积分(速度→位移):
对速度积分得到位移:
y ( t ) = ∫ y ˙ d t = ∫ ( v 0 sin γ 0 − g t ) d t = v 0 sin γ 0 ⋅ t − 1 2 g t 2 + C 2 y(t) = \int \dot{y} \, dt = \int \left( v_0 \sin\gamma_0 - gt \right) dt = v_0 \sin\gamma_0 \cdot t - \frac{1}{2}gt^2 + C_2 y(t)=∫y˙dt=∫(v0sinγ0−gt)dt=v0sinγ0⋅t−21gt2+C2
代入初始条件 t = 0 t=0 t=0时, y ( 0 ) = y 0 y(0) = y_0 y(0)=y0,解得积分常数 C 2 = y 0 C_2 = y_0 C2=y0。
最终位移表达式为:
y ( t ) = y 0 + ( v 0 sin γ 0 ) t − 1 2 g t 2 y(t) = y_0 + \left( v_0 \sin\gamma_0 \right)t - \frac{1}{2}gt^2 y(t)=y0+(v0sinγ0)t−21gt2
结论:
式(b)是通过对竖直方向的加速度
y
¨
=
−
g
\ddot{y} = -g
y¨=−g进行两次积分,并分别代入初始速度
v
0
sin
γ
0
v_0 \sin\gamma_0
v0sinγ0和初始位置
y
0
y_0
y0得到的。其物理意义是抛射体在竖直方向的运动由初始速度的竖直分量和重力加速度共同决定,表现为匀变速直线运动,轨迹方程为抛物线。