【天外之物】自由落体运动

在这里插入图片描述


式(b)的推导过程如下:

  1. 初始条件与加速度
    物体在竖直方向(y轴)的初始位置为 y 0 y_0 y0,初始速度分量为 v 0 sin ⁡ γ 0 v_0 \sin\gamma_0 v0sinγ0,加速度为恒定的 − g -g g(方向向下)。

  2. 第一次积分(加速度→速度)
    对加速度积分一次得到速度:
    y ¨ = − g    ⟹    ∫ y ¨   d t = ∫ − g   d t    ⟹    y ˙ = − g t + C 1 \ddot{y} = -g \implies \int \ddot{y} \, dt = \int -g \, dt \implies \dot{y} = -gt + C_1 y¨=gy¨dt=gdty˙=gt+C1
    代入初始条件 t = 0 t=0 t=0时, y ˙ ( 0 ) = v 0 sin ⁡ γ 0 \dot{y}(0) = v_0 \sin\gamma_0 y˙(0)=v0sinγ0,解得积分常数 C 1 = v 0 sin ⁡ γ 0 C_1 = v_0 \sin\gamma_0 C1=v0sinγ0
    因此,速度表达式为:
    y ˙ ( t ) = v 0 sin ⁡ γ 0 − g t \dot{y}(t) = v_0 \sin\gamma_0 - gt y˙(t)=v0sinγ0gt

  3. 第二次积分(速度→位移)
    对速度积分得到位移:
    y ( t ) = ∫ y ˙   d t = ∫ ( v 0 sin ⁡ γ 0 − g t ) d t = v 0 sin ⁡ γ 0 ⋅ t − 1 2 g t 2 + C 2 y(t) = \int \dot{y} \, dt = \int \left( v_0 \sin\gamma_0 - gt \right) dt = v_0 \sin\gamma_0 \cdot t - \frac{1}{2}gt^2 + C_2 y(t)=y˙dt=(v0sinγ0gt)dt=v0sinγ0t21gt2+C2
    代入初始条件 t = 0 t=0 t=0时, y ( 0 ) = y 0 y(0) = y_0 y(0)=y0,解得积分常数 C 2 = y 0 C_2 = y_0 C2=y0
    最终位移表达式为:
    y ( t ) = y 0 + ( v 0 sin ⁡ γ 0 ) t − 1 2 g t 2 y(t) = y_0 + \left( v_0 \sin\gamma_0 \right)t - \frac{1}{2}gt^2 y(t)=y0+(v0sinγ0)t21gt2

结论
式(b)是通过对竖直方向的加速度 y ¨ = − g \ddot{y} = -g y¨=g进行两次积分,并分别代入初始速度 v 0 sin ⁡ γ 0 v_0 \sin\gamma_0 v0sinγ0和初始位置 y 0 y_0 y0得到的。其物理意义是抛射体在竖直方向的运动由初始速度的竖直分量和重力加速度共同决定,表现为匀变速直线运动,轨迹方程为抛物线。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高山莫衣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值