数值分析学习笔记——牛顿插值多项式

2.3 均差与牛顿插值多项式

1.均差定义:定义 f [ x 0 , x k ] = f ( x k ) − f ( x 0 ) x k − x 0 f[x_0,x_k]=\frac{f(x_k)-f(x_0)}{x_k-x_0} f[x0,xk]=xkx0f(xk)f(x0)为函数 f ( x ) f(x) f(x)关于点 x 0 x_0 x0, x k x_k xk一阶均差,定义 f [ x 0 , x 1 , x k ] = f [ x 0 , x k ] − f [ x 0 , x 1 ] x k − x 1 f[x_0,x_1,x_k]=\frac{f[x_0,x_k]-f[x_0,x_1]}{x_k-x_1} f[x0,x1,xk]=xkx1f[x0,xk]f[x0,x1]为函数 f ( x ) f(x) f(x)关于点 x 0 x_0 x0, x 1 x_1 x1, x k x_k xk二阶均差,则定义
f [ x 0 , x 1 , ⋯   , x k ] = f [ x 0 , x 1 , ⋯   , x k − 2 , x k ] − f [ x 0 , x 1 , ⋯   , x k − 2 , x k − 1 ] x k − x k − 1 = ∑ j = 0 n f ( x j ) ω n ′ ( x j ) (1.17) f[x_0,x_1,\cdots,x_k]=\frac{f[x_0,x_1,\cdots,x_{k-2},x_k]-f[x_0,x_1,\cdots,x_{k-2},x_{k-1}]}{x_k-x_{k-1}}=\sum_{j=0}^{n}\frac{f(x_j)}{\omega^\prime_n(x_j)} \tag{1.17} f[x0,x1,,xk]=xkxk1f[x0,x1,,xk2,xk]f[x0,x1,,xk2,xk1]=j=0nωn(xj)f(xj)(1.17)
为函数 f ( x ) f(x) f(x)关于 x 0 , x 1 , , ⋯   , x k x_0,x_1,,\cdots,x_k x0,x1,,,xkk阶均差k阶差商

2.均差性质:

(1)若 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上存在 n n n阶导数,且节点 x 0 , x 1 , ⋯   , x n ∈ [ a , b ] x_0,x_1,\cdots,x_n\in[a,b] x0,x1,,xn[a,b],则n阶均差与导数关系
f [ x 0 , x 1 , ⋯   , x n ] = f ( n ) ( ξ ) n ! , ξ ∈ [ a , b ] (1.18) f[x_0,x_1,\cdots,x_n]=\frac{f^{(n)}(\xi)}{n!},\xi \in[a,b]\tag{1.18} f[x0,x1,,xn]=n!f(n)(ξ),ξ[a,b](1.18)
(可采用罗尔定理证明)

(2)均差对称性
f [ x 0 , x 1 , ⋯   , x k ] = f [ x 1 , x 0 , x 2 , ⋯   , x k ] = ⋯ = f [ x 1 , ⋯   , x k , x 0 ] f[x_0,x_1,\cdots,x_k]=f[x_1,x_0,x_2,\cdots,x_k]=\cdots=f[x_1,\cdots,x_k,x_0] f[x0,x1,,xk]=f[x1,x0,x2,,xk]==f[x1,,xk,x0]
(3)由(1.17)式子和均差性质(2)得
f [ x 0 , x 1 , ⋯   , x k ] = f [ x 0 , x 1 , ⋯   , x k − 2 , x k ] − f [ x 0 , x 1 , ⋯   , x k − 2 , x k − 1 ] x k − x k − 1 (1.17-C) f[x_0,x_1,\cdots,x_k]=\frac{f[x_0,x_1,\cdots,x_{k-2},x_k]-f[x_0,x_1,\cdots,x_{k-2},x_{k-1}]}{x_k-x_{k-1}}\tag{1.17-C} f[x0,x1,,xk]=xkxk1f[x0,x1,,xk2,xk]f[x0,x1,,xk2,xk1](1.17-C)
3.均差形式的牛顿插值多项式(插值节点任意分布情况使用)

由一次插值多项式得
P 1 ( x ) = P 0 ( x ) + f [ x 0 , x 1 ] ( x − x 0 ) = f ( x 0 ) + f [ x 0 , x 1 ] ( x − x 0 ) \begin{aligned} P_1(x)&=P_0(x)+f[x_0,x_1](x-x_0)\\&=f(x_0)+f[x_0,x_1](x-x_0) \end{aligned} P1(x)=P0(x)+f[x0,x1](xx0)=f(x0)+f[x0,x1](xx0)
由二次插值多项式得
P 2 ( x ) = P 1 ( x ) + f [ x 0 , x 1 , x 2 ] ( x − x 0 ) ( x − x 1 ) = f ( x 0 ) + f [ x 0 , x 1 ] ( x − x 0 ) ( x − x 1 ) \begin{aligned} P_2(x)&=P_1(x)+f[x_0,x_1,x_2](x-x_0)(x-x_1)\\ &=f(x_0)+f[x_0,x_1](x-x_0)(x-x_1) \end{aligned} P2(x)=P1(x)+f[x0,x1,x2](xx0)(xx1)=f(x0)+f[x0,x1](xx0)(xx1)

根据均差定义,将 x x x看成 [ a , b ] [a,b] [a,b]上的一点,得
f ( x ) = f ( x 0 ) + f [ x , x 0 ] ( x − x 0 ) f [ x , x 0 ] = f [ x 0 , x 1 ] + f [ x , x 0 , x 1 ] ( x − x 1 ) ⋮ f [ x , x 0 , ⋯   , x n − 1 ] = f [ x 0 , x 1 , ⋯   , x n ] + f [ x , x 0 , ⋯   , x n ] ( x − x n ) f(x)=f(x_0)+f[x,x_0](x-x_0)\\ f[x,x_0]=f[x_0,x_1]+f[x,x_0,x_1](x-x_1)\\ \vdots\\f[x,x_0,\cdots,x_{n-1}]=f[x_0,x_1,\cdots,x_n]+f[x,x_0,\cdots,x_n](x-x_n) f(x)=f(x0)+f[x,x0](xx0)f[x,x0]=f[x0,x1]+f[x,x0,x1](xx1)f[x,x0,,xn1]=f[x0,x1,,xn]+f[x,x0,,xn](xxn)
叠加后得
f ( x ) = f ( x 0 ) + f [ x 0 , x 1 ] ( x − x 0 ) + f [ x 0 , x 1 , x 2 ] ( x − x 0 ) ( x − x 1 ) + ⋯ + f [ x 0 , x 1 , ⋯   , x n ] ( x − x 0 ) ⋯ ( x − x n − 1 ) + f [ x , x 0 , ⋯   , x n ] ω n + 1 ( x ) = P n ( x ) + R n ( x ) \begin{aligned} f(x)&=f(x_0)+f[x_0,x_1](x-x_0)+f[x_0,x_1,x_2](x-x_0)(x-x_1)+\cdots\\ &+f[x_0,x_1,\cdots,x_n](x-x_0)\cdots(x-x_{n-1})+f[x,x_0,\cdots,x_n]\omega_{n+1}(x)\\&=P_n(x)+R_n(x) \end{aligned} f(x)=f(x0)+f[x0,x1](xx0)+f[x0,x1,x2](xx0)(xx1)++f[x0,x1,,xn](xx0)(xxn1)+f[x,x0,,xn]ωn+1(x)=Pn(x)+Rn(x)
其中
P n ( x ) = f ( x 0 ) + f [ x 0 , x 1 ] ( x − x 0 ) + f [ x 0 , x 1 , x 2 ] ( x − x 0 ) ( x − x 1 ) + ⋯ + f [ x 0 , x 1 , ⋯   , x n ] ( x − x 0 ) ⋯ ( x − x n − 1 ) (1.19) \begin{aligned} P_n(x)&=f(x_0)+f[x_0,x_1](x-x_0)+f[x_0,x_1,x_2](x-x_0)(x-x_1)+\cdots\\ &+f[x_0,x_1,\cdots,x_n](x-x_0)\cdots(x-x_{n-1}) \end{aligned}\tag{1.19} Pn(x)=f(x0)+f[x0,x1](xx0)+f[x0,x1,x2](xx0)(xx1)++f[x0,x1,,xn](xx0)(xxn1)(1.19)

R n ( x ) = f ( x ) − P n ( x ) = f [ x , x 0 , ⋯   , x n ] ω n + 1 ( x ) (1.20) \begin{aligned} R_n(x)=f(x)-P_n(x)=f[x,x_0,\cdots,x_n]\omega_{n+1}(x)\end{aligned}\tag{1.20} Rn(x)=f(x)Pn(x)=f[x,x0,,xn]ωn+1(x)(1.20)

对于多项式 P n ( x ) P_n(x) Pn(x)满足 P n ( x i ) = f ( x i ) P_n(x_i)=f(x_i) Pn(xi)=f(xi),且次数不超过n,将 P n ( x ) P_n(x) Pn(x)表示为
P n ( x ) = a 0 + a 1 ( x − x 0 ) + ⋯ + a n ( x − x 0 ) ⋯ ( x − x n − 1 ) P_n(x)=a_0+a_1(x-x_0)+\cdots+a_n(x-x_0)\cdots(x-x_{n-1}) Pn(x)=a0+a1(xx0)++an(xx0)(xxn1)
其中
a k = f [ x 0 , x 1 , ⋯   , x n ] , k = 0 , 1 , ⋯   , n a_k=f[x_0,x_1,\cdots,x_n],k=0,1,\cdots,n ak=f[x0,x1,,xn],k=0,1,,n
P n ( x ) P_n(x) Pn(x)牛顿均差插值多项式,余项为
R n ( x ) = f ( x ) − P n ( x ) = f [ x 0 , x 1 , ⋯   , x n ] ω n + 1 ( x ) (1.21) R_n(x)=f(x)-P_n(x)=f[x_0,x_1,\cdots,x_n]\omega_{n+1}(x)\tag{1.21} Rn(x)=f(x)Pn(x)=f[x0,x1,,xn]ωn+1(x)(1.21)
4.差分形式的牛顿均值多项式(等距节点分布情况使用)

对于 x k = x 0 + k h x_k=x_0+kh xk=x0+kh此类的节点分布, h h h为步长;设 x k x_k xk对应的函数值 f k = f ( x k ) , k = 0 , 1 , ⋯   , n f_k=f(x_k),k=0,1,\cdots,n fk=f(xk),k=0,1,,n,称 Δ f k = f k + 1 − f k \Delta f_k=f_{k+1}-f_k Δfk=fk+1fk x k x_k xk处以 h h h为步长的一阶(向前)差分;称 Δ 2 f k = Δ f k + 1 − Δ f k \Delta^2 f_k=\Delta f_{k+1}-\Delta f_k Δ2fk=Δfk+1Δfk x k x_k xk处的二阶差分,一般地称
Δ n f k = Δ n − 1 f k + 1 − Δ n − 1 f k (1.22) \Delta^n f_k=\Delta^{n-1}f_{k+1}-\Delta^{n-1} f_k\tag{1.22} Δnfk=Δn1fk+1Δn1fk(1.22)
x k x_k xk​处的n阶差分

定义 I f k = f k , E f k = f k + 1 If_k=f_k,Ef_k=f_{k+1} Ifk=fk,Efk=fk+1,其中 I I I不变算子 E E E为步长为 h h h位移算子
Δ f k = f k + 1 − f k = E f k − I f k = ( E − I ) f k \Delta f_k=f_{k+1}-f_k=Ef_k-If_k=(E-I)f_k Δfk=fk+1fk=EfkIfk=(EI)fk

Δ n f k = ∑ j = 0 n ( − 1 ) j ( n j ) E n − j f k = ∑ j = 0 n ( − 1 ) j ( n j ) f n + k − j (1.23) \Delta^n f_k=\sum_{j=0}^{n}(-1)^j\begin{pmatrix}n\\j\end{pmatrix}E^{n-j}f_k =\sum_{j=0}^{n}(-1)^j\begin{pmatrix}n\\j\end{pmatrix}f_{n+k-j}\tag{1.23} Δnfk=j=0n(1)j(nj)Enjfk=j=0n(1)j(nj)fn+kj(1.23)

其中 ( n j ) = n ( n − 1 ) ⋯ ( n − j + 1 ) j ! \begin{pmatrix} n\\j \end{pmatrix}=\frac{n(n-1)\cdots(n-j+1)}{j!} (nj)=j!n(n1)(nj+1)为二项式展开系数,由此(1.21)式能够将各阶差分通过函数值给出;而也可以用各阶差分表示函数值
f n + k = E n f k = ( I + Δ ) n f k = ∑ j = 0 n ( n j ) Δ i f k (1.24) f_{n+k}=E^nf_k=(I+\Delta)^n f_k=\sum_{j=0}^{n}\begin{pmatrix}n\\j\end{pmatrix}\Delta^if_k\tag{1.24} fn+k=Enfk=(I+Δ)nfk=j=0n(nj)Δifk(1.24)
均差和差分的关系
f [ x k , ⋯   , x k + m ] = 1 m ! 1 h m Δ m f k , m = 1 , 2 , ⋯   , n (1.25) f[x_k,\cdots,x_{k+m}]=\frac{1}{m!}\frac{1}{h^m}\Delta^mf_k,m=1,2,\cdots,n\tag{1.25} f[xk,,xk+m]=m!1hm1Δmfk,m=1,2,,n(1.25)
由(1.18)式均差与导数的关系,得到差分与导数(微商)的关系
Δ n f k = h n f n ( ξ ) , ξ ∈ ( x k , x k + 1 ) (1.26) \Delta^nf_k=h^nf^{n}(\xi),\xi\in(x_k,x_{k+1})\tag{1.26} Δnfk=hnfn(ξ),ξ(xk,xk+1)(1.26)
在(1.19)式中,均差部分都采用差分代替,即通过(1.25)式替换,且令 x = x 0 + t h x=x_0+th x=x0+th,得
P n ( x ) = P n ( x 0 + t h ) = f 0 + t Δ f 0 + t ( t − 1 ) 2 ! Δ 2 f 0 + ⋯ + t ( t − 1 ) ⋯ ( t − n + 1 ) n ! Δ n f 0 (1.27) P_n(x)=P_n(x_0+th)=f_0+t\Delta f_0+\frac{t(t-1)}{2!}\Delta^2f_0+\cdots\\+\frac{t(t-1)\cdots(t-n+1)}{n!}\Delta^nf_0\tag{1.27} Pn(x)=Pn(x0+th)=f0+tΔf0+2!t(t1)Δ2f0++n!t(t1)(tn+1)Δnf0(1.27)
称(1.27)式为牛顿前插公式,余项为
R n ( x ) = f ( x ) − P n ( x ) = t ( t − 1 ) ⋯ ( t − n ) ( n + 1 ) ! h n + 1 f n + 1 ( ξ ) , ξ ∈ ( x 0 , x n ) (1.28) R_n(x)=f(x)-P_n(x)=\frac{t(t-1)\cdots(t-n)}{(n+1)!}h^{n+1}f^{n+1}(\xi),\xi\in(x_0,x_n)\tag{1.28} Rn(x)=f(x)Pn(x)=(n+1)!t(t1)(tn)hn+1fn+1(ξ),ξ(x0,xn)(1.28)
误差分析时可以写成
∣ R n ( x ) ∣ ≤ M n + 1 ( n + 1 ) ! ∣ t ( t − 1 ) ⋯ ( t − n ) ∣ h n + 1 (1.29) |R_n(x)|\leq \frac{M_{n+1}}{(n+1)!}|t(t-1)\cdots(t-n)|h^{n+1}\tag{1.29} Rn(x)(n+1)!Mn+1t(t1)(tn)hn+1(1.29)
其中 f ( n + 1 ) ( ξ ) ≤ M n + 1 f^{(n+1)}(\xi)\leq M_{n+1} f(n+1)(ξ)Mn+1

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值