数值分析学习笔记——插值法

一、插值法

1. 多项式插值

​ 在区间 [ a , b ] [a,b] [a,b]中给定 n + 1 n+1 n+1个点
a ≤ x 0 < x 1 < ⋯ < x n ≤ b a\leq x_0<x_1<\cdots<x_n\leq b ax0<x1<<xnb
上对应的 y i = f ( x i ) ( i = 0 , 1 , ⋯   , n ) y_i=f(x_i)(i=0,1,\cdots,n) yi=f(xi)(i=0,1,,n),求次数不超过 n n n次的多项式
P ( x ) = a 0 + a 1 x + ⋯ + a n x n (1.1) P(x)=a_0+a_1x+\cdots+a_nx^n \tag{1.1} P(x)=a0+a1x++anxn(1.1)
使得
P ( x i ) = y i , i = 0 , 1 , ⋯   , n (1.2) P(x_i)=y_i,i=0,1,\cdots,n \tag{1.2} P(xi)=yi,i=0,1,,n(1.2)
得到关于系数 a 0 , a 1 , ⋯   , a n a_0,a_1,\cdots,a_n a0,a1,,an n + 1 n+1 n+1元线性方程组
{ a 0 + a 1 x 0 + ⋯ + a n x 0 n = y 0 a 0 + a 1 x 1 + ⋯ + a n x 1 n = y 1 ⋮ a 0 + a 1 x n + ⋯ + a n x n n = y n (1.3) \begin{cases} a_0+a_1x_0+\cdots+a_nx_0^n=y_0\\ a_0+a_1x_1+\cdots+a_nx_1^n=y_1\\ \vdots\\ a_0+a_1x_n+\cdots+a_nx_n^n=y_n \end{cases}\tag{1.3} a0+a1x0++anx0n=y0a0+a1x1++anx1n=y1a0+a1xn++anxnn=yn(1.3)
得到
A { a 0 , a 1 , ⋯   , a n } T = { y 0 , y 1 , ⋯   , y n } T A\begin{Bmatrix}a_0,a_1,\cdots,a_n\end{Bmatrix}^T=\begin{Bmatrix}y_0,y_1,\cdots,y_n\end{Bmatrix}^T A{a0,a1,,an}T={y0,y1,,yn}T
其中
A = [ 1 x 0 ⋯ x 0 n 1 x 1 ⋯ x 1 n ⋮ ⋮ ⋮ 1 x n ⋯ x n n ] (1.4) A=\begin{bmatrix} 1&x_0&\cdots&x_0^n\\ 1&x_1&\cdots&x_1^n\\ \vdots&\vdots&&\vdots\\ 1&x_n&\cdots&x_n^n\\ \end{bmatrix}\tag{1.4} A= 111x0x1xnx0nx1nxnn (1.4)
称为范德蒙德矩阵,其行列式为
∣ A ∣ = ∣ 1 x 0 ⋯ x 0 n 1 x 1 ⋯ x 1 n ⋮ ⋮ ⋮ 1 x n ⋯ x n n ∣ = ∏ i , j = 0 , i > j n ( x i − x j ) ≠ 0 (1.5) |A|=\begin{vmatrix}1&x_0&\cdots&x_0^n\\ 1&x_1&\cdots&x_1^n\\ \vdots&\vdots&&\vdots\\ 1&x_n&\cdots&x_n^n\\ \end{vmatrix}=\prod_{i,j=0,i>j}^{n}(x_i-x_j)\neq0 \tag{1.5} A= 111x0x1xnx0nx1nxnn =i,j=0,i>jn(xixj)=0(1.5)

  • 15
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值