问题描述
数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处。有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒。
当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。
提示
因为所有小球的初始位置都为偶数,而且线段的长度为偶数,可以证明,不会有三个小球同时相撞,小球到达线段端点以及小球之间的碰撞时刻均为整数。
同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。
输入格式
输入的第一行包含三个整数n, L, t,用空格分隔,分别表示小球的个数、线段长度和你需要计算t秒之后小球的位置。
第二行包含n个整数a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置。
输出格式
输出一行包含n个整数,用空格分隔,第i个整数代表初始时刻位于ai的小球,在t秒之后的位置。
样例输入
3 10 5
4 6 8
样例输出
7 9 9
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
int main() {
int n, L, t;
int a[101][100];
int dir[100];
memset(a, 0, sizeof(a));
cin >> n >> L >> t;
for (int j = 0; j < 100; j++)
dir[j] = 1;
for (int j = 0; j < n; j++)
cin >> a[0][j];
for (int i = 1; i <= t; i++) {
for (int j = 0; j < n; j++)
a[i][j] = a[i - 1][j] + dir[j];
for (int j1 = 0; j1 < n - 1; j1++) //两球相撞
for (int j2 = j1 + 1; j2 < n; j2++)
if (a[i][j1] == a[i][j2])
dir[j1] = -dir[j1], dir[j2] = -dir[j2];
for (int j = 0; j < n; j++) //碰到边缘
if (a[i][j] == 0 || a[i][j] == L)
dir[j] = -dir[j];
}
for (int j = 0; j < n; j++)
cout << a[t][j] << " ";
return 0;
}