架构-如何画架构图

本文探讨了如何绘制高质量的技术架构图,涵盖了架构图的基本类型,如逻辑视图、物理视图、处理流程视图等,并分享了成为优秀架构师所必需的绘图技巧。

资料

如何画出一张合格的技术架构图?
如何画架构图?
产品经理的高阶能力:架构图的设计与画法
设计图都不会画,还想做”架构师“?
你知道如何画好一幅架构图么?
系统逻辑架构图怎么画
想要做”架构师“,一定要会画设计图
画出你的项目架构图
一个关于“系统架构图怎么画?”的问题

不错的架构图

BFF - Backend for Frontend

在这里插入图片描述

在这里插入图片描述
BFF in Serverless
在这里插入图片描述
在这里插入图片描述

前端应用框架 TWA - Techless Web Apps

在这里插入图片描述

在这里插入图片描述

前段应用框架-Bigfish/Umi
在这里插入图片描述
在这里插入图片描述

≠–

前段UI组件库

在这里插入图片描述
在这里插入图片描述

跨平台

weex

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

场景试图

在这里插入图片描述

逻辑视图

在这里插入图片描述

物理视图

在这里插入图片描述

处理流程视图

在这里插入图片描述

开发视图

在这里插入图片描述

语境图

在这里插入图片描述

容器图

在这里插入图片描述

组件图

在这里插入图片描述

案例分享

在这里插入图片描述

<think>我们正在讨论如何绘制双向长短期记忆网络(Bi-LSTM)的架构。根据引用[1][2][3],Bi-LSTM是一种结合了前向和后向LSTM层的神经网络结构,用于捕捉序列数据中的双向依赖关系。绘制其架构需要理解LSTM单元的内部结构和双向连接方式。步骤:1.理解LSTM单元:每个LSTM单元包含输入门、遗忘门、输出门和候选记忆单元。在架构中,通常用一个包含这些门的方块表示。2.双向结构:Bi-LSTM由两个独立的LSTM层组成,一个处理正向序列(从开始到结束),另一个处理反向序列(从结束到开始)。这两个层的输出在每一步合并(通常是拼接)。3.绘制步骤:a.绘制输入序列:通常用水平排列的向量表示,如$x_1, x_2, ...,x_T$。b.绘制前向LSTM层:在输入序列上方,按时间步从左到右绘制LSTM单元,并用箭头表示前向传递(从左到右)。c.绘制后向LSTM层:在输入序列下方,按时间步从右到左绘制LSTM单元,并用箭头表示后向传递(从右到左)。d.合并输出:在每个时间步,将前向LSTM的输出($h_t^{\rightarrow}$)和后向LSTM的输出($h_t^{\leftarrow}$)拼接(或相加等)得到该时间步的最终输出$h_t= [h_t^{\rightarrow}, h_t^{\leftarrow}]$。注意:也可以使用展开的示意,但这样可能过于复杂。通常,我们会用简化的方式表示,例如只出几个时间步并标注重复结构。示例架构描述(无法直接绘,但可描述):-输入层:输入序列$x_1, x_2, x_3,..., x_T$-前向LSTM层:在每个时间步t,接收输入$x_t$和前一个时间步的隐藏状态$h_{t-1}^{\rightarrow}$,输出$h_t^{\rightarrow}$。-后向LSTM层:在每个时间步t,接收输入$x_t$和后一个时间步的隐藏状态$h_{t+1}^{\leftarrow}$,输出$h_t^{\leftarrow}$。-输出层:每个时间步将两个方向的隐藏状态拼接,形成$h_t =[h_t^{\rightarrow},h_t^{\leftarrow}]$。如果使用绘工具(如TensorBoard, draw.io,PowerPoint等),可以按照以下步骤:1.创建时间步:水平排列T个节点(表示输入)。2.在每个时间步上方一个LSTM单元(前向),并用箭头连接相邻的前向单元(从左到右)。3.在每个时间步下方一个LSTM单元(后向),并用箭头连接相邻的后向单元(从右到左)。4.每个时间步,从两个LSTM单元引出隐藏状态,然后合并(用拼接符号表示)得到该时间步的输出。另外,也可以参考引用[2]中提到的Bi-LSTM的特点:双向信息捕捉、长序列依赖等,在中标注关键点。注意:在实际绘中,LSTM单元内部结构可以简化表示(如一个方框),不必出详细的门结构,除非需要展示内部机制。引用[1]和[3]提到Bi-LSTM通过双向结构整合了未来和过去的信息,所以在绘制时要注意双向信息流的表示。相关问题:1. Bi-LSTM架构中每个LSTM单元的内部结构如何表示?2.如何用代码实现Bi-LSTM模型?3. Bi-LSTM与单向LSTM在架构上的主要区别是什么?</think>### 如何绘制双向长短期记忆网络(Bi-LSTM)架构 绘制Bi-LSTM架构需理解其核心结构:**两个方向相反的LSTM层**(前向层和后向层)在**每个时间步**的隐藏状态进行合并。以下是绘制步骤和关键要素: --- #### 一、核心组件表示 1. **输入序列** 用水平排列的向量表示时间步: $$x_1 \to x_2 \to \cdots \to x_T$$ ($T$为序列长度) 2. **LSTM单元结构** 每个LSTM单元包含: - **输入门** $i_t$:控制新信息输入 - **遗忘门** $f_t$:控制记忆保留 - **输出门** $o_t$:控制输出 - **记忆单元** $c_t$:长期状态 - **隐藏状态** $h_t$:短期状态 ![LSTM单元简](https://miro.medium.com/v2/resize:fit:640/format:webp/1*goJVQs-p9kgLODFNyhl9zA.png) *简化表示:可用带门符号的矩形框* 3. **双向连接** - **前向层**($\rightarrow$):从左到右处理序列,隐藏状态记为 $h_t^{\rightarrow}$ - **后向层**($\leftarrow$):从右到左处理序列,隐藏状态记为 $h_t^{\leftarrow}$ - **合并操作**:每个时间步拼接两个方向的输出: $$h_t = [h_t^{\rightarrow}; h_t^{\leftarrow}]$$ --- #### 二、架构绘制步骤 1. **绘制输入序列** ```mermaid graph LR A[x1] --> B[x2] --> C[...] --> D[xT] ``` 2. **添加双向LSTM层** - **上层**:前向LSTM(箭头向右) - **下层**:后向LSTM(箭头向左) ```mermaid graph LR subgraph Forward LSTM A1[h1→] --> A2[h2→] --> A3[...] --> A4[hT→] end subgraph Backward LSTM B1[h1←] <-- B2[h2←] <-- B3[...] <-- B4[hT←] end x1 --> A1 & B1 x2 --> A2 & B2 xT --> A4 & B4 ``` 3. **合并双向输出** 在每个时间步添加合并层(常用拼接或求和): ```mermaid graph LR A1[h1→] --> C1[Concat] B1[h1←] --> C1 C1 --> D1[h1 = [h1→; h1←]] ``` 4. **完整示意** ![Bi-LSTM架构](https://www.researchgate.net/profile/Mehdi-Amini-5/publication/339542064/figure/fig1/AS:866372197842944@1583642029640/Structure-of-the-Bi-LSTM-model.png) *典型Bi-LSTM架构(来源:ResearchGate)* --- #### 三、关键注意事项 1. **时间步对齐**:前向与后向层需在相同时间步接收输入 $x_t$[^3]。 2. **合并方式**:明确标注合并操作(如拼接、相加或平均)。 3. **输出层**:若用于分类/回归,添加全连接层并标注激活函数(如Softmax)。 4. **内部细节**: - 展开LSTM门结构时,标注公式: $$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$ (其他门类似) - 记忆单元更新:$c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$ --- #### 四、工具推荐 - **绘软件**:TensorBoard(自动生成)、draw.io、PowerPoint - **代码可视化**: ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Bidirectional, LSTM model = Sequential() model.add(Bidirectional(LSTM(64), input_shape=(100, 10))) # 输入:100时间步×10特征 ``` 使用`model.summary()`或`tf.keras.utils.plot_model()`生成架构--- ### 相关问题 1. Bi-LSTM与单向LSTM在架构上的核心区别是什么? 2. 如何可视化Bi-LSTM中记忆单元的门控机制? 3. Bi-LSTM在自然语言处理任务中的典型应用有哪些?[^2] [^1]: Bi-LSTM通过双向结构整合未来与过去信息,增强序列建模能力 [^2]: 双向LSTM能同时捕捉过去和未来的上下文信息,适用于时间序列预测、机器翻译等任务 [^3]: LSTM通过门控机制实现选择性记忆,解决传统RNN的长期依赖问题
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵健zj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值