在研究关于单目深度估计轻量化的过程中发现了同一团队在2018年和2022年在嵌入式(树莓派3)上实现关于实时单目深度估计的研究,其中开源代码复现需要做的内容基本一致。两篇文献分别为:Towards real-time unsupervised monocular depth estimation on CPUReal-time Self-Supervised Monocular Depth Estimation Without GPU
开源代码来源pydnet/README.md at master · mattpoggi/pydnet
前期准备
根据readme中的需求提示,需要安装Tensorflow 1.8 ,opencv, matplotlib三个库,与Tensorflow 1.8匹配的python安装了3.6版本。
conda create -n pydnet python=3.6
conda activate pydnet
conda install tensorflow=1.8
conda install opencv-python
conda install matplotlib
在网络摄像头流上运行 pydnet
python webcam.py --model [pydnet,pydnet2] --resolution [1,2,3]需要选择后在输入在命令行中运行,这里以pydnet2、3为例。注意这里如果用的是虚拟机(VMware、WSL)会出现报错找不到摄像机,需要根据其他人分享的教程先做网络摄像头这部分工作。
如果是在ubuntu系统的实体机上执行需要注意是否正确连接上了usb相机,在webcam.py程序中cam=cv2.VideoCapture(0)处可能不一定是0需要修改,曾经出现过5才是正确端口的情况。
python webcam.py --model =pydnet2 --resolution 3