在嵌入式上实现实时单目深度估计的学习笔记(未实现在Monodepth中的模型训练)

        在研究关于单目深度估计轻量化的过程中发现了同一团队在2018年和2022年在嵌入式(树莓派3)上实现关于实时单目深度估计的研究,其中开源代码复现需要做的内容基本一致。两篇文献分别为:Towards real-time unsupervised monocular depth estimation on CPUReal-time Self-Supervised Monocular Depth Estimation Without GPU

开源代码来源pydnet/README.md at master · mattpoggi/pydnet

前期准备

根据readme中的需求提示,需要安装Tensorflow 1.8 ,opencv, matplotlib三个库,与Tensorflow 1.8匹配的python安装了3.6版本。

conda create -n pydnet python=3.6
conda activate pydnet
conda install tensorflow=1.8
conda install opencv-python
conda install matplotlib

在网络摄像头流上运行 pydnet

python webcam.py --model [pydnet,pydnet2] --resolution [1,2,3]需要选择后在输入在命令行中运行,这里以pydnet2、3为例。注意这里如果用的是虚拟机(VMware、WSL)会出现报错找不到摄像机,需要根据其他人分享的教程先做网络摄像头这部分工作。

如果是在ubuntu系统的实体机上执行需要注意是否正确连接上了usb相机,在webcam.py程序中cam=cv2.VideoCapture(0)处可能不一定是0需要修改,曾经出现过5才是正确端口的情况。

python webcam.py --model =pydnet2 --resolution 3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值