逆元的意义及求法

快速幂求逆元:  
int q_pow(int a,int n,int m) {    
    int ans = 1;    
    while(n) {    
        if (n&1) {    
            ans = ans*a%m;    
        }     
        a = a*a%m;   
        n >>= 1;    
    }    
    return ans;    
}   
LL  Fermatinv(LL a,LL m) { //前提p是质数
	return qpow(a,m-2,m);
}
扩展欧几里得求逆元  
void ex_gcd(LL a,LL b,LL &x,LL &y){    
    if(!b){x=1;y=0;return;}    
    ex_gcd(b,a%b,y,x);    
    y-=a/b*x;    
}    
LL mod_rev(LL a,LL n) {    
    LL x,y;    
    ex_gcd(a,n,x,y);    
    return (x+n)%n;    
}    

  • 4
    点赞
  • 3
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:鲸 设计师:meimeiellie 返回首页
评论

打赏作者

相思明月楼

你的鼓励是我最大的动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值