Hadoop -- Hadoop的高可用HA搭建

HA简介

  1. 所谓HA(High Available),即高可用(7*24小时不中断服务)。
  2. 实现高可用最关键的策略是消除单点故障。HA严格来说应该分成各个组件的HA机制:HDFS的HA和YARN的HA。
  3. Hadoop2.0之前,在HDFS集群中NameNode存在单点故障(SPOF)。
  4. NameNode主要在以下两个方面影响HDFS集群
    NameNode机器发生意外,如宕机,集群将无法使用,直到管理员重启
    NameNode机器需要升级,包括软件、硬件升级,此时集群也将无法使用
    HDFS HA功能通过配置Active/Standby两个NameNodes实现在集群中对NameNode的热备来解决上述问题。如果出现故障,如机器崩溃或机器需要升级维护,这时可通过此种方式将NameNode很快的切换到另外一台机器。

HA工作要点

  1. 元数据管理方式需要改变
    内存中各自保存一份元数据;
    Edits日志只有Active状态的NameNode节点可以做写操作;
    两个NameNode都可以读取Edits;
    共享的Edits放在一个共享存储中管理(qjournal和NFS两个主流实现);
  2. 需要一个状态管理功能模块
    实现了一个zkfailover,常驻在每一个namenode所在的节点,每一个zkfailover负责监控自己所在NameNode节点,利用zk进行状态标识,当需要进行状态切换时,由zkfailover来负责切换,切换时需要防止brain split现象的发生。
  3. 必须保证两个NameNode之间能够ssh无密码登录
  4. 隔离(Fence),即同一时刻仅仅有一个NameNode对外提供服务

1.准备环境

  以三台为例:
1)准备3台客户机(关闭防火墙、静态ip、主机名称)
2)配置ssh,同步时间
3)安装JDK
4)安装Zookeeper
5)安装Hadoop
6)配置环境变量
7)配置集群
8)群起并测试集群

  集群规划:
在这里插入图片描述

2.配置ssh,同步时间

  配置SSH参考:https://blog.csdn.net/Aeve_imp/article/details/105393061
  同步时间:date -s "xxxx-xx-xx xx:xx:xx"

3.安装JDK

  省略

4.安装Zookeeper

  在hadoop102、hadoop103和hadoop104三个节点上部署Zookeeper。

  1. 解压安装
tar -zxvf zookeeper-3.4.10.tar.gz -C /opt/module/
  1. 在/opt/module/zookeeper-3.4.10/这个目录下创建zkData,mkdir -p zkData
  2. 重命名/opt/module/zookeeper-3.4.10/conf这个目录下的zoo_sample.cfg为zoo.cfg
mv zoo_sample.cfg zoo.cfg
  1. 配置zoo.cfg文件
#修改配置
dataDir=/opt/module/zookeeper-3.4.10/zkData
#增加配置
server.2=hadoop102:2888:3888
server.3=hadoop103:2888:3888
server.4=hadoop104:2888:3888
  1. 分发文件:scp zookeeper-3.4.10 用户名@主机名:/opt/module/
  2. 进入zookeeper的zkData下,创建myid文件,根据上面zoo.cfg的server.x,给不同机器配置不同id
cd zkData
# hadoop102
echo 2 > myid

# hadoop103
echo 3 > myid

# hadoop104
echo 4 > myid
  1. 分别启动zookeeper,并查看各个zk状态
bin/zkServer.sh start
bin/zkServer.sh status

5.安装Hadoop

  1. 上传并解压
tar -zxvf hadoop-2.7.2.tar.gz -C /opt/software/
  1. 配置环境变量
vi ~/.bash_profile
export JAVA_HOME=/opt/software/jdk1.8.0_181
export HADOOP_HOME=/opt/software/hadoop-2.7.7
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

  source ~/.bash_profile,刷新环境变量,查看版本,后面scp分发后需要在其他机器也source下

java -version
hadoop version
  1. 修改hadoop-env.xml
      在javaHome那里添加javaHome的位置,设置hadoop pid文件夹,默认存储在tmp目录下,会被系统清理,导致后面不能群关集群,vi hadoop-env.sh
export JAVA_HOME=/opt/software/jdk1.8.0_181
export HADOOP_PID_DIR=/opt/ha/hadoop-2.7.2/pids
  1. 修改core-site.xml,添加如下配置
<configuration>
<!-- 把两个NameNode)的地址组装成一个集群mycluster -->
		<property>
			<name>fs.defaultFS</name>
        	<value>hdfs://mycluster</value>
		</property>

		<!-- 指定hadoop运行时产生文件的存储目录 -->
		<property>
			<name>hadoop.tmp.dir</name>
			<value>/opt/ha/hadoop-2.7.2/data/tmp</value>
		</property>

		<!-- 失败自动切换 -->
		<property>
			<name>ha.zookeeper.quorum</name>
			<value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value>
		</property>
		<!-- 垃圾桶 -->
		<property>
		    <name>fs.trash.interval</name>
		    <value>1440</value>
  	    </property>
</configuration>

  1. 修改hdfs-site.xml
<configuration>
	  <property>
	    <name>dfs.replication</name>
	    <value>3</value>
	  </property>
	<!-- 完全分布式集群名称 -->
	<property>
		<name>dfs.nameservices</name>
		<value>mycluster</value>
	</property>

	<!-- 集群中NameNode节点都有哪些 -->
	<property>
		<name>dfs.ha.namenodes.mycluster</name>
		<value>nn1,nn2</value>
	</property>

	<!-- nn1的RPC通信地址 -->
	<property>
		<name>dfs.namenode.rpc-address.mycluster.nn1</name>
		<value>hadoop102:9000</value>
	</property>

	<!-- nn2的RPC通信地址 -->
	<property>
		<name>dfs.namenode.rpc-address.mycluster.nn2</name>
		<value>hadoop103:9000</value>
	</property>

	<!-- nn1的http通信地址 -->
	<property>
		<name>dfs.namenode.http-address.mycluster.nn1</name>
		<value>hadoop102:50070</value>
	</property>

	<!-- nn2的http通信地址 -->
	<property>
		<name>dfs.namenode.http-address.mycluster.nn2</name>
		<value>hadoop103:50070</value>
	</property>

	<!-- 指定NameNode元数据在JournalNode上的存放位置 -->
	<property>
		<name>dfs.namenode.shared.edits.dir</name>
	<value>qjournal://hadoop102:8485;hadoop103:8485;hadoop104:8485/mycluster</value>
	</property>

	<!-- 配置隔离机制,即同一时刻只能有一台服务器对外响应 -->
	<property>
		<name>dfs.ha.fencing.methods</name>
		<value>sshfence</value>
	</property>

	<!-- 使用隔离机制时需要ssh无秘钥登录-->
	<property>
		<name>dfs.ha.fencing.ssh.private-key-files</name>
		<value>/home/hadoop/.ssh/id_rsa</value>
	</property>

	<!-- 声明journalnode服务器存储目录-->
	<property>
		<name>dfs.journalnode.edits.dir</name>
		<value>/opt/ha/hadoop-2.7.2/data/jn</value>
	</property>

	<!-- 关闭权限检查-->
	<property>
		<name>dfs.permissions.enable</name>
		<value>true</value>
	</property>

	<!-- 访问代理类:client,mycluster,active配置失败自动切换实现方式-->
	<property>
  		<name>dfs.client.failover.proxy.provider.mycluster</name>
		<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
	</property>
	<!-- 失败自动切换 -->
	<property>
		<name>dfs.ha.automatic-failover.enabled</name>
		<value>true</value>
	</property>
	<!-- 安装用户是谁,xxx改成谁 -->
	<property>
        <name>hadoop.proxyuser.bigdata.hosts</name>
        <value>*</value>
	</property>
	<property>
        <name>hadoop.proxyuser.bigdata.groups</name>
        <value>*</value>
	</property>
</configuration>
  1. 修改mapred-site.xml
<!-- 指定MR运行在Yarn上 -->
<property>
		<name>mapreduce.framework.name</name>
		<value>yarn</value>
</property>
  1. 修改yarn-site.xml
<configuration>

    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>

    <!--启用resourcemanager ha-->
    <property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
    </property>
 
    <!--声明两台resourcemanager的地址-->
    <property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>cluster-yarn1</value>
    </property>

    <property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>rm1,rm2</value>
    </property>

    <property>
        <name>yarn.resourcemanager.hostname.rm1</name>
        <value>hadoop102</value>
    </property>

    <property>
        <name>yarn.resourcemanager.hostname.rm2</name>
        <value>hadoop103</value>
    </property>
 
    <!--指定zookeeper集群的地址--> 
    <property>
        <name>yarn.resourcemanager.zk-address</name>
        <value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value>
    </property>

    <!--启用自动恢复--> 
    <property>
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
    </property>
    <!--指定resourcemanager的状态信息存储在zookeeper集群--> 
    <property>
        <name>yarn.resourcemanager.store.class</name>     
        <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<!-- 允许分配给一个任务最大的CPU核数,默认是8 -->
<property>
        <name>yarn.nodemanager.resource.cpu-vcores</name>
        <value>14</value>
</property>
<property>
        <name>yarn.scheduler.maximum-allocation-vcores</name>
        <value>8</value>
</property>
<!-- 每个节点可用内存,单位MB -->
<property>
        <name>yarn.nodemanager.resource.memory-mb</name>
        <value>56320</value>
</property>
<!-- 单个任务可申请最少内存,默认1024MB -->
<property>
        <name>yarn.scheduler.minimum-allocation-mb</name>
        <value>1024</value>
</property>
<!-- 单个任务可申请最大内存,默认8192MB -->
<property>
        <name>yarn.scheduler.maximum-allocation-mb</name>
        <value>16384</value>
</property>
<property>
        <name>yarn.nodemanager.vmem-check-enable</name>
        <value>false</value>
</property>
<property>
    <name>yarn.log-aggregation-enable</name>
    <value>true</value>
</property>
<property>
     <name>yarn.log-aggregation.retain-seconds</name>
     <value>604800</value>
 </property>
      <property>
        <name>yarn.log.server.url</name>        
        <value>http://xxx:19888/jobhistory/logs</value>
</property>
<property>
    <name>yarn.nodemanager.aux-services</name>
    <value>spark_shuffle</value>
  </property>
  <property>
    <name>yarn.nodemanager.aux-services.spark_shuffle.class</name>
    <value>org.apache.spark.network.yarn.YarnShuffleService</value>
  </property>
  <property>
    <name>spark.shuffle.service.port</name>
    <value>7337</value>
  </property>
<property>
</configuration>
  1. 修改slave,删除localhost,添加如下:
hadoop0002
hadoop0003
hadoop0004
  1. 分发文件
scp -r hadoop-2.7.2 用户名@主机名:$PWD

6.群起集群

1. 在各个JournalNode节点上,输入以下命令启动journalnode服务
```shell
hadoop-daemon.sh start journalnode
  1. 在[nn1]上,对其进行格式化
hadoop namenode -format
  1. 启动集群
start-dfs.sh
  1. 在[nn2]上,同步nn1的元数据信息
hdfs namenode -bootstrapStandby
  1. 初始化/启动 zkfc
bin/hdfs zkfc -formatZK

hadoop-daemon.sh start zkfc
  1. 停止hdfs,重新启动所有
stop-dfs.sh
start-dfs.sh
  1. 启动yarn
#在主resourceManager节点启动yarn
start-yarn.sh
#在备resourceManager节点启动resourceManager
sbin/yarn-daemon.sh start resourcemanager
  1. 将某节点改为active
bin/hdfs haadmin -transitionToActive nn1
  1. 查看namenode是否激活状态
bin/hdfs haadmin -getServiceState nn1

7.验证

  进入页面查看状态,hdfs端口50070,yarn端口8088

http://xxxx:50070
http://xxxx:8088

在这里插入图片描述
在这里插入图片描述
  使用hadoop example测试wordcount:

#编辑文件,上传hdfs,提交任务
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar wordcount wcinput wcoutput

参考:hadoop3.x部署

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值