Nvidia B100/B200/GB200 关键技术解读

芯片

1. GPU芯片

  • 晶体管数:

  • B200 GPU的晶体管数量是现有H100的两倍多,但B200封装了2080亿个晶体管(而H100/H200上为800亿个)。这意味着B200芯片封装密度比H100进一步提高,对管理散热和功耗也提出了更高的要求。

  • FP4精度:

  • 引入一种新的计算精度,位宽比FP8进一步降低,B200峰值算力达18P。

  • FP6精度:

  • 位宽介于FP4和FP8之间。

  • NV高带宽接口(Nvidia High Bandwidth Interface):

  • B200有两个Die,高速连接通道NV-HBI达到10TB/s。两个Die是一个统一的Cuda GPU。NV-HBI会占用一定的芯片面积。

  • 内存:

  • B200每个Die有4个24GB的HBM3e stack,合计一个Cuda GPU有192GB内存,内存带宽达8TB/s。相比H200时代六个内存控制器,可以减少内存接口的芯片面积,从而使得计算面积可以更大。

  • GB200:

  • 有两个B200(4个GPU Die)和一个Grace CPU,2700W。

2. NVLink芯片

第五代NV-Link芯片,双向带宽达1.8TB/s = 18(links) * 50GB/s (bandwidth each direction) * 2,是Hopper GPU使用的第四代NV-Link的2倍。最大支持576个GPU的连接,相比上一代是256个。

3. NVSwitch芯片

第四代NVSwitch芯片,7.2TB/s的全双工带宽,是上一代的两倍。

4. DPU和CPU没有更新

服务器

  • HGX B200:

  • 一机八B200整机解决方案。每个B200是1000W。

  • HGX B100:

  • 一机八B100整机解决方案。每个B100是700W。

GB200 SuperPOD 服务器

  • GB200 superchip:

  • 2个CPU和4个B200。这个compute tray是1U的,液冷。

  • GB200 NVL72:

  • 包含18个1U compute tray(共72个B200)、9个Switch Tray(共18个Switch )。

  • GB200 superPOD:

  • 576个B200 GPU。与H100相比,superpod的训练性能提升4倍,推理性能提高30倍,能效提高25倍。

Blackwell 架构的 GPU

基本技术参数

一文看懂英伟达A100、A800、H100、H800各个版本有什么区别? - 知乎 (zhihu.com)

AI核弹B200发布:超级GPU新架构30倍H100单机可训15个GPT-4模型,AI进入新摩尔时代 - 知乎 (zhihu.com)

先进计算技术路线图(2023) - 知乎 (zhihu.com)

建议收藏!大模型100篇必读论文 - 知乎 (zhihu.com)

马斯克起诉 OpenAI:精彩程度堪比电视剧,马斯克与奥特曼、OpenAI的「爱恨纠缠史」 - 知乎 (zhihu.com)

生物信息学必备网站大全 - 知乎 (zhihu.com)

生物信息学简史 - 知乎 (zhihu.com

2023第一性原理科研服务器、量化计算平台推荐 - 知乎 (zhihu.com)

Llama-2 LLM各个版本GPU服务器的配置要求是什么? - 知乎 (zhihu.com)

人工智能训练与推理工作站、服务器、集群硬件配置推荐

整理了一些深度学习,人工智能方面的资料,可以看看

机器学习、深度学习和强化学习的关系和区别是什么? - 知乎 (zhihu.com)

人工智能 (Artificial Intelligence, AI)主要应用领域和三种形态:弱人工智能、强人工智能和超级人工智能。

买硬件服务器划算还是租云服务器划算? - 知乎 (zhihu.com)

深度学习机器学习知识点全面总结 - 知乎 (zhihu.com)

自学机器学习、深度学习、人工智能的网站看这里 - 知乎 (zhihu.com)

2023年深度学习GPU服务器配置推荐参考(3) - 知乎 (zhihu.com)

多年来一直专注于科学计算服务器,入围政采平台,H100、A100、H800、A800、L40、L40S、RTX6000 Ada,RTX A6000,单台双路256核心服务器等。

<think>好的,用户想知道如何在MATLAB中使用GPU进行并行计算,需要教程和示例代码。首先,我得确认用户可能已经了解一些MATLAB的基础,但可能对并行计算和GPU加速不太熟悉。需要分步骤解释,确保清晰。 首先,我应该介绍必要的工具箱,也就是Parallel Computing Toolbox,因为这是使用GPU功能的前提。然后,可能需要检查GPU是否支持,这一步对用户来说很重要,避免他们遇到兼容性问题。 接下来,数据转换是关键步骤。用户需要知道如何将数据从CPU转移到GPU,使用gpuArray函数。同时,处理后的数据如何取回,用gather函数。这部分需要明确说明,并提供简单示例。 然后是示例代码部分,用户可能希望看到实际的代码操作,比如矩阵乘法,因为这是常见的计算任务,容易理解。需要展示从创建矩阵、转换到GPU、计算再取回的过程。此外,可以加入计时比较,突出GPU加速的效果,这样用户能直观看到优势。 可能还需要提到内置函数自动支持GPU数组,这样用户知道不需要修改太多代码。另外,注意事项也很重要,比如数据传输开销、适合大规模计算等,避免用户误用在小数据上反而变慢。 用户的问题还提到生成相关问题,我需要考虑他们可能进一步的问题,比如如何检查GPU兼容性,数据转换的更多方法,适合GPU计算的任务类型,以及常见错误的处理。这些问题能帮助用户深入学习和解决问题。 最后,确保引用正确,根据提供的引用资料,引用1、2、3、4都涉及MATLAB的GPU计算,所以在适当的位置加入引用标记,比如在介绍工具箱时引用[^1],示例代码引用[^2],内置函数部分引用[^3],注意事项引用[^4]。这样保证回答的可靠性和参考依据。 整个过程中要使用中文,行内公式用$...$,独立公式用$$...$$,虽然当前问题可能不涉及数学公式,但如果有提到计算性能或算法复杂度,可能需要应用。不过这次示例中可能不需要,但需要保持结构清晰,代码块正确,语言简洁易懂。</think>### MATLAB GPU并行计算实现步骤 #### 一、环境准备 1. 确认安装**Parallel Computing Toolbox**(并行计算工具箱)[^1] 2. 检查GPU兼容性(需支持CUDA的NVIDIA显卡): ```matlab gpuDevice % 显示当前GPU设备信息 ``` #### 二、核心操作流程 1. **数据转换**:主机内存→GPU显存 ```matlab cpuData = rand(5000); % 创建5000x5000随机矩阵 gpuData = gpuArray(cpuData); % 转换为GPU数组 ``` 2. **并行计算**:直接调用支持GPU的内置函数 ```matlab gpuResult = exp(gpuData) .* sin(gpuData); % GPU上的并行运算 ``` 3. **数据回传**:显存→内存 ```matlab cpuResult = gather(gpuResult); % 将结果返回主机内存 ``` #### 三、典型应用示例 **矩阵乘法加速对比**: ```matlab % CPU计算 A = rand(5000); B = rand(5000); tic; C_cpu = A * B; cpuTime = toc; % GPU计算 gpuA = gpuArray(A); gpuB = gpuArray(B); tic; gpuC = gpuA * gpuB; gpuTime = toc; fprintf('CPU耗时: %.2fs\nGPU耗时: %.2fs\n加速比: %.1fx\n',... cpuTime, gpuTime, cpuTime/gpuTime); ``` #### 四、关键特性说明 - **自动并行化**:200+内置函数(如`fft`,`svd`,`.*`等)直接支持GPU数组 - **混合编程**:可与`parfor`循环结合实现多层次并行 - **内核调用**:通过`arrayfun`执行自定义核函数 #### 五、注意事项 1. 显存容量限制:GPU数组大小不超过显存容量 2. 数据传输开销:小规模计算可能得不偿失 3. 算法适配性:适合规则数据并行处理(矩阵运算、信号处理等)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值