Nvidia B100/B200/GB200 关键技术解读

芯片

1. GPU芯片

  • 晶体管数:

  • B200 GPU的晶体管数量是现有H100的两倍多,但B200封装了2080亿个晶体管(而H100/H200上为800亿个)。这意味着B200芯片封装密度比H100进一步提高,对管理散热和功耗也提出了更高的要求。

  • FP4精度:

  • 引入一种新的计算精度,位宽比FP8进一步降低,B200峰值算力达18P。

  • FP6精度:

  • 位宽介于FP4和FP8之间。

  • NV高带宽接口(Nvidia High Bandwidth Interface):

  • B200有两个Die,高速连接通道NV-HBI达到10TB/s。两个Die是一个统一的Cuda GPU。NV-HBI会占用一定的芯片面积。

  • 内存:

  • B200每个Die有4个24GB的HBM3e stack,合计一个Cuda GPU有192GB内存,内存带宽达8TB/s。相比H200时代六个内存控制器,可以减少内存接口的芯片面积,从而使得计算面积可以更大。

  • GB200:

  • 有两个B200(4个GPU Die)和一个Grace CPU,2700W。

2. NVLink芯片

第五代NV-Link芯片,双向带宽达1.8TB/s = 18(links) * 50GB/s (bandwidth each direction) * 2,是Hopper GPU使用的第四代NV-Link的2倍。最大支持576个GPU的连接,相比上一代是256个。

3. NVSwitch芯片

第四代NVSwitch芯片,7.2TB/s的全双工带宽,是上一代的两倍。

4. DPU和CPU没有更新

服务器

  • HGX B200:

  • 一机八B200整机解决方案。每个B200是1000W。

  • HGX B100:

  • 一机八B100整机解决方案。每个B100是700W。

GB200 SuperPOD 服务器

  • GB200 superchip:

  • 2个CPU和4个B200。这个compute tray是1U的,液冷。

  • GB200 NVL72:

  • 包含18个1U compute tray(共72个B200)、9个Switch Tray(共18个Switch )。

  • GB200 superPOD:

  • 576个B200 GPU。与H100相比,superpod的训练性能提升4倍,推理性能提高30倍,能效提高25倍。

Blackwell 架构的 GPU

基本技术参数

一文看懂英伟达A100、A800、H100、H800各个版本有什么区别? - 知乎 (zhihu.com)

AI核弹B200发布:超级GPU新架构30倍H100单机可训15个GPT-4模型,AI进入新摩尔时代 - 知乎 (zhihu.com)

先进计算技术路线图(2023) - 知乎 (zhihu.com)

建议收藏!大模型100篇必读论文 - 知乎 (zhihu.com)

马斯克起诉 OpenAI:精彩程度堪比电视剧,马斯克与奥特曼、OpenAI的「爱恨纠缠史」 - 知乎 (zhihu.com)

生物信息学必备网站大全 - 知乎 (zhihu.com)

生物信息学简史 - 知乎 (zhihu.com

2023第一性原理科研服务器、量化计算平台推荐 - 知乎 (zhihu.com)

Llama-2 LLM各个版本GPU服务器的配置要求是什么? - 知乎 (zhihu.com)

人工智能训练与推理工作站、服务器、集群硬件配置推荐

整理了一些深度学习,人工智能方面的资料,可以看看

机器学习、深度学习和强化学习的关系和区别是什么? - 知乎 (zhihu.com)

人工智能 (Artificial Intelligence, AI)主要应用领域和三种形态:弱人工智能、强人工智能和超级人工智能。

买硬件服务器划算还是租云服务器划算? - 知乎 (zhihu.com)

深度学习机器学习知识点全面总结 - 知乎 (zhihu.com)

自学机器学习、深度学习、人工智能的网站看这里 - 知乎 (zhihu.com)

2023年深度学习GPU服务器配置推荐参考(3) - 知乎 (zhihu.com)

多年来一直专注于科学计算服务器,入围政采平台,H100、A100、H800、A800、L40、L40S、RTX6000 Ada,RTX A6000,单台双路256核心服务器等。

### NVIDIA B100 GPU Specifications and Information NVIDIA B100 GPU represents a significant advancement in the field of high-performance computing, particularly suited for deep learning and scientific calculations. This device adopts NVIDIA's latest GPU architecture, integrating an extensive number of Tensor Cores and CUDA Cores to provide robust computational power for various tasks such as training large-scale neural networks or conducting complex simulations[^3]. #### Architecture and Performance The integration of numerous Tensor Cores alongside traditional CUDA cores ensures that B100 can handle both matrix operations critical for AI applications efficiently while maintaining versatility across other types of workloads. Moreover, support for multiple precision formats including FP32 (single), FP16 (half), TF32 further enhances its adaptability by allowing users to choose between speed and accuracy based on their specific requirements. #### Memory Configuration In terms of memory configuration, although not explicitly detailed within provided references, it is implied from context clues about similar GPUs like A100 which typically feature substantial amounts of fast-access RAM designed specifically around optimizing data throughput during intensive processing sessions involving massive datasets common today’s cutting-edge research projects[^1]. ```python # Example Python code demonstrating how one might interact with TensorFlow using mixed precisions supported by B100. import tensorflow as tf with tf.device('/GPU:0'): # Use float16 policy for better performance when possible policy = tf.keras.mixed_precision.Policy('mixed_float16') model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'], dtype=policy) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值