自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(621)
  • 资源 (1)
  • 收藏
  • 关注

原创 人工智能深度学习100种网络模型,精心整理,全网最全,PyTorch框架逐一搭建

大家好,我是微学AI,今天给大家介绍一下人工智能深度学习100种网络模型,这些模型可以用PyTorch深度学习框架搭建。模型按照个人学习顺序进行排序

2023-06-03 08:44:01 26924 13

原创 手把手教你本地CPU环境部署清华大模型ChatGLM-6B,利用量化模型,本地即可开始智能聊天,达到ChatGPT的80%

大家好,我是微学AI,今天教你们本地CPU环境部署清华大ChatGLM-6B模型,利用量化模型,每个人都能跑动大模型。ChatGLM-6B是一款出色的中英双语对话模型,拥有超过62亿个参数,可高效地处理日常对话场景。与GLM-130B模型相比,ChatGLM-6B在对话场景处理能力方面表现更加卓越。此外,在使用体验方面,ChatGLM-6B采用了模型量化技术和本地部署技术,为用户提供更加便利和灵活的使用方式。值得一提的是,该模型还能够在单张消费级显卡上顺畅运行,速度较快,是一款非常实用的对话模型。

2023-04-28 17:07:02 25081 38

原创 人工智能实战项目(python)+多领域实战练手项目

人工智能实战项目目录一、机器学习实战项目1.机器学习实战1-四种算法对比对客户信用卡还款情况进行预测2.机器学习实战2-聚类算法分析亚洲足球梯队 (待更新)...(待更新)二、深度学习实战项目1.深度学习实战1-(keras框架)企业数据分析与预测2.深度学习实战2-(keras框架)企业信用评级与预测3.深度学习实战3-文本卷积神经网络(TextCNN)新闻文本分类4.深度学习实战4-卷积神经网络(DenseNet)数学图形识别+题目模式识别5.深度学习实战5-卷积神经...

2022-05-14 17:31:53 18134 60

原创 深度学习实战6-卷积神经网络(Pytorch)+聚类分析实现空气质量与天气预测

大家好,我是微学AI,今天给大家带来一个利用卷积神经网络(pytorch版)实现空气质量的识别与预测。我们知道雾霾天气是一种大气污染状态,PM2.5被认为是造成雾霾天气的“元凶”,PM2.5日均值越小,空气质量越好.空气质量评价的主要污染物为细颗粒物(PM2.5)、可吸入颗粒物(PM10)、二氧化硫(SO2)、二氧化氮(NO2)、臭氧(O3)、一氧化碳(CO)等六项。

2022-05-12 16:58:37 15738 71

原创 人工智能任务21-飞蛾火焰优化算法(MFO)在深度学习中的应用

大家好,我是微学AI,今天给大家介绍一下人工智能任务21-飞蛾火焰优化算法(MFO)在深度学习中的应用。飞蛾火焰优化算法(Moth-Flame Optimization, MFO)是一种受自然界中飞蛾向光源趋近行为启发的新型群体智能优化算法。在自然界中,飞蛾使用一种称为“横侧定位”的策略来保持直线飞行,即它们会相对于月亮或星星保持一个恒定的角度飞行。然而,当遇到人造光源时,这种机制会导致飞蛾以螺旋路径逐渐靠近光源。

2025-02-14 16:02:38 309

原创 内网穿透的应用-无需依赖第三方!使用Navidrome在本地服务器搭建私人音乐空间

今天我要给大家种草一款超酷的私有化音乐服务器——Navidrome!它不仅能让你们随时随地畅享本地音乐库,还能让你们在忙碌的工作之余,找到一片属于自己的小天地。如果你厌倦了那些千篇一律的在线音乐平台,渴望拥有一个完全个性化的音乐空间,那么这个教程绝对是你不可错过的秘密武器!Navidrome是一款全能、开源且支持多平台的音乐服务器应用程序,无论是macOS、Linux、Windows还是Docker,它都能轻松驾驭。无论你是MP3、FLAC还是WAV的忠实粉丝,Navidrome都能完美支持。

2025-02-13 16:01:35 740 3

原创 我的创作纪念日

通过写了《大模型的应用实战之智能高中数学教师(MathGPT)》、《大模型的应用实战之AI高中数学教学视频生成技术》、《大模型的应用实战之基于Qwen-32b模型与知识图谱技术、RAG等实现数据的归因分析》系列文章,将模型微调、数学符号处理等关键技术点结构化输出,既巩固了自身认知体系,也形成了可复用的方法论。采用"实验-文档-代码-文章"四维同步模式:在开发MathGPT的Latex解析模块时,技术文档直接转化为《大模型数学符号处理全解析》系列文章,代码同步开源在GitHub,形成完整的技术交付闭环。

2025-02-13 14:11:00 347

原创 机器学习实战34-关于融合多头注意力机制((Multiple-Head Attention))+LSTM模型的冬小麦需水量预测

多头注意力机制最初由Vaswani等人在《Attention is All You Need》这篇论文中提出,它通过并行执行多个独立的注意力函数来增强原始Transformer架构的信息处理能力。每个“头”都专注于数据的不同方面,之后再将各个头的结果汇总起来得到最终输出。这样设计的好处在于既保留了局部细节又兼顾全局视角,提高了模型的理解力和泛化性能。在农业领域内,作物生长周期内的水资源需求量直接影响着最终产量与品质。

2025-02-13 11:42:03 14 1

原创 Deepseek的行业解决方案等应用场景结合蓝耘算力平台的应用实践教程

在当今快速发展的信息技术和人工智能领域,Deepseek-R1-32b模型与蓝耘算力平台的结合为各行业提供了强大的计算支持和高效的解决方案。蓝耘算力平台是一个专为GPU加速计算设计的高性能计算中心,具备灵活的资源调度、基于Kubernetes架构的优化、按使用量计费模式以及安全可靠的服务保障等特性,能够满足机器学习、深度学习、人工智能研究及视觉特效渲染等高计算需求的应用场景。

2025-02-12 15:07:33 629

原创 AI大模型的应用之Deepseek-R1模型的提示词架构以及编写方法,并提供了可配置的提示词模板框架

深度推理模型是指那些能够基于给定的数据集或知识库,通过多步逻辑推理来解决复杂问题的人工智能系统。这类模型不仅能够处理简单的模式识别任务,还能对信息进行深层次的理解和分析,从而完成更复杂的认知任务。DeepSeekR1 正是这样一个代表性的作品,它在设计之初就旨在打破传统AI只能执行简单指令或提供基础信息的局限性,向更加智能化的方向迈进。该模板适用于大多数基本场景,通过指定说话者/提问者的角色以及明确的目标来构建提示词。这种结构简洁明了,容易被理解和执行。示例1。

2025-02-11 14:10:22 789

原创 GPU算力平台之Deepseek入门应用|Deepseek-R1-32b模型应用与GPU算力平台部署教程

今天我们来介绍如何在云端GPU算力平台上部署Deepseek-R1-32b模型。该平台专为高性能GPU计算设计,广泛应用于机器学习、深度学习和视觉特效渲染等领域。

2025-02-11 10:31:38 955 5

原创 内网穿透的应用-Ubuntu本地Docker搭建pichome文件管理系统打造个人云相册

你是不是也经常遇到这样的尴尬:手机、电脑里堆满了照片和视频,想找一张特定的图片时却像在大海捞针一样无从下手?别担心,今天我要给大家安利一款超级神器——PicHome!它不仅能让你的照片管理变得井井有条,还能让文件共享变得更有趣。更重要的是,我们还会教你如何用Docker快速部署,并借助cpolar内网穿透工具实现异地远程访问。快来一起体验吧!【视频教程】5分钟本地搭建开源网盘系统PicHome打造个人云相册。

2025-02-10 15:50:00 720 1

原创 Deepseek的新应用|Deepseek-R1-32b模型在GPU算力平台部署的应用教程

今天我将详细介绍如何在云端GPU算力平台上部署Deepseek-R1-32b模型,该平台是一个专为GPU加速计算设计的高性能计算中心,主要服务于软件和信息技术领域。它不仅提供强大的、可灵活扩展的GPU资源,还具备一系列优化特性,适用于机器学习、深度学习、人工智能研究及视觉特效渲染等高计算需求的应用场景。灵活的资源调度云端GPU算力平台能够根据具体的工作负载智能调配计算资源,支持多种高端GPU型号,如NVIDIA RTX 4090、RTX 3090、A100和A800。

2025-02-10 08:51:32 1897 3

原创 Deepseek的应用|在GPU算力平台部署Deepseek-R1-1.5b轻量版模型的应用教程

今天我将介绍一个最新的云端GPU算力平台,它是一个专为GPU加速计算设计的高性能计算中心,主要服务于软件和信息技术领域。它提供强大的、可灵活扩展的GPU资源,适用于机器学习、人工智能及视觉特效渲染等高计算需求的应用。灵活资源调度:平台能够根据具体工作负载精准调配计算资源,支持多种高端GPU型号,如NVIDIA RTX 4090、RTX 3090、A100和A800,满足不同场景下的计算需求。Kubernetes架构优化。

2025-02-08 11:29:28 1452 8

原创 Deepseek与GPU算力平台|在GPU算力平台部署Deepseek-R1-32b模型的应用教程

今天我将介绍一下云端GPU算力平台,它是一个专为GPU加速计算设计的高性能计算中心,主要服务于软件和信息技术领域。它提供强大的、可灵活扩展的GPU资源,适用于机器学习、人工智能及视觉特效渲染等高计算需求的应用。灵活资源调度:平台能够根据具体工作负载精准调配计算资源,支持多种高端GPU型号,如NVIDIA RTX 4090、RTX 3090、A100和A800,满足不同场景下的计算需求。Kubernetes架构优化。

2025-02-06 18:52:56 2021 12

原创 内网穿透的应用-绿联NAS新手必看:如何通过ssh安装内网穿透实现异地远程连接

大家好,今天给大家带来一个超实用的技巧:如何在绿联NAS上快速安装cpolar内网穿透工具,让你即使没有公网IP,也能随时随地远程访问自己的NAS。从此告别繁琐的路由器设置,轻松实现远程管理。一起来看看吧!

2025-02-06 18:39:19 389 1

原创 DeepSeek推理模型架构以及DeepSeek爆火的原因

大家好,我是微学AI,今天给大家介绍一下DeepSeek推理模型架构以及DeepSeek爆火的原因,DeepSeek推理模型凭借其创新的混合专家(MoE)架构和优化的Transformer架构,融合稀疏注意力机制,实现了高效的计算资源分配与显著降低的推理成本。在训练过程中,DeepSeek广泛应用蒸馏技术,通过生成高质量数据和将大型模型的推理能力迁移至小型模型,大幅提升训练效率与模型性能。

2025-02-05 11:02:12 1098

原创 GPU算力平台|在GPU算力平台部署MuseTalk与MuseV结合的虚拟人的应用教程

今天给大家介绍一个GPU算力服务平台,蓝耘GPU算力平台专为高性能计算场景设计,广泛应用于机器学习、人工智能以及视觉特效渲染等领域。

2025-01-26 11:29:42 1114 1

原创 GPU算力平台|在GPU算力平台部署AI虚拟换衣模型(CatVTON)的应用实战教程

蓝耘GPU算力平台专为高性能计算设计,广泛应用于机器学习、人工智能及视觉特效渲染等领域。1. 模型简介CatVTON 是一个专为虚拟换衣设计的小型AI模型,旨在为时尚爱好者提供便捷、高效的换衣体验。它具有轻量级网络结构,能够在个人电脑上轻松运行,特别适合对硬件资源有限的用户。2. 模型特点轻量级网络:尽管CatVTON拥有899.06M的参数总量,但其中只有49.57M是可训练参数。这种设计使得模型在保持较高精度的同时,显著减少了训练和推理时的计算负担。低显存需求。

2025-01-24 17:01:00 762

原创 内网穿透的应用-简单几步完成GPT-SoVITS的一键安装与配置实现远程AI语音克隆

今天我要给大家揭秘一个超级有趣的‘声音魔法’——GPT-SoVITS!这款由花儿不哭大佬精心打造的语音克隆工具,在GitHub上已经收获了超35K颗星星,绝对算得上是声音界的明星产品了。你可能要问:这东西会不会很难用啊?错啦!GPT-SoVITS V2版不仅支持中、日、英、韩、粤五种语言,还增加了许多实用功能,比如语速调节和无参考文本模式。最棒的是,它为Windows用户准备了整合包,下载解压就能轻松上手。不过,假如你只有一台性能强劲的电脑,并且希望在外出时也能随心所欲地使用这个项目怎么办?别急!

2025-01-23 17:00:47 858 2

原创 GPU算力平台|在GPU算力平台部署可图大模型Kolors的应用实战教程

蓝耘GPU算力平台专为高性能计算设计,广泛应用于机器学习、人工智能及视觉特效渲染等高计算需求领域。智能资源调度:平台能够根据工作负载需求精确调配最新的NVIDIA GPU(如RTX 4090、RTX 3090、A100和A800),满足各种复杂场景的计算需求。优化的Kubernetes架构:基于Kubernetes构建,针对大规模GPU任务进行了深度优化,支持灵活调整计算资源,确保高效利用和快速响应。按需付费模式。

2025-01-23 16:00:45 909

原创 GPU算力平台|在GPU算力平台部署MedicalGPT医疗大模型的应用教程

MedicalGPT 医疗大模型通过先进的训练技术,包括增量预训练、有监督微调、RLHF(奖励建模与强化学习训练)以及DPO(直接偏好优化),实现了在医疗领域的卓越性能和广泛应用。借助这些技术,MedicalGPT 不仅能够高效处理和理解复杂的医疗数据,还能生成高质量的临床文本,提供精准的诊断建议和治疗方案。这一创新解决方案不仅提升了医疗服务的效率和准确性,还为医疗机构和专业人员提供了强大的决策支持工具,助力实现更优质的患者护理和更高的运营效益。

2025-01-22 17:17:51 1091

原创 GPU算力平台|在GPU算力平台部署百川大模型(Baichuan2)的应用教程

百川大模型(Baichuan2)在模型架构设计上独具匠心,展现出卓越的商业价值与技术实力。在数据处理环节,构建大规模聚类和去重系统,从多源收集数据,经严格筛选与处理,保障数据全面性与代表性,为模型训练筑牢坚实基础。分词器作为关键组件,词汇表从Baichuan1的64,000扩展到125,696,采用SentencePiece字节对编码(BPE),优化参数设置,兼顾高效推理与词嵌入充分训练。核心架构基于Transformer,并在此基础上进行优化。激活函数选用SwiGLU,隐层尺寸合理调整;

2025-01-21 17:14:21 1388 2

原创 GPU算力平台|在GPU算力平台部署ChatGLM4大模型的应用教程

云端GPU算力平台是一个专为GPU加速计算设计的高性能计算中心,主要应用于软件和信息技术服务领域。该平台提供强大且灵活扩展的GPU资源,广泛适用于机器学习、人工智能以及视觉特效渲染等高计算需求的应用场景。定制化资源分配:平台具备高度定制化的资源分配能力,能够根据具体的工作负载需求精准调配计算资源。无论是最新的NVIDIA RTX 4090、RTX 3090,还是高性能的A100和A800 GPU,平台均能应对各种复杂场景下的计算需求。基于Kubernetes架构优化。

2025-01-21 15:46:03 1072

原创 内网穿透的应用-玩转Portainer:轻松打造固定公网地址的Nginx静态站点

各位小伙伴们,大家好!今天给大家带来一个超级实用又充满乐趣的小技巧——如何在Portainer中创建Nginx容器,并且部署一个静态站点实现公网访问。如果你已经掌握了Docker的基本操作,那么接下来的内容绝对会让你眼前一亮。在此之前,我们曾分享过一篇关于《LinuxDocker图形化工具Portainer远程访问》的文章,教你如何使用Docker部署Portainer并结合cpolar内网穿透实现公网访问。今天,我们将更进一步,带你一起探索Nginx静态站点的奥秘。

2025-01-20 15:01:43 741

原创 2024年AI大模型技术年度总结与应用实战:创新与突破并进

回顾2024年,我一共发布了286篇博文,粉丝数也达到了43000多。这一年里,我收获颇丰,始终坚持AI大模型的研究方向,并且积极开展大模型的实战应用,也取得了一系列令人振奋的突破。

2025-01-20 10:16:36 1571

原创 AI大模型架构背后的数学原理和数学公式,基于Transformer架构的数学公式有哪些?

大家好,我是微学AI,今天给大家介绍一下大模型架构大部分是基于Transformer架构的研发出来的,背后的数学原理涉及线性代数、概率论、优化理论等。以下是关键数学原理和公式的详细说明及示例。

2025-01-17 17:31:56 974 1

原创 GPU算力平台|在GPU算力平台部署轻量级中文OCR项目(chineseocr_lite)

GPU算力平台是专为GPU加速计算而设计的云端高性能计算中心,属于软件和信息技术服务领域。它提供强大且灵活扩展的GPU资源,适用于机器学习、人工智能及视觉特效渲染等应用。平台的核心竞争力在于其高度定制化的资源分配能力,能够根据具体的工作负载需求精准调配计算资源。无论使用的是最新的NVIDIA RTX 4090、RTX 3090,还是高性能的A100和A800 GPU,平台均能满足各种复杂场景下的计算需求。

2025-01-16 14:25:29 1620

原创 GPU算力平台|在GPU算力平台部署虚拟服装试穿工具OOTDiffusion的教程

GPU算力平台可视为专为GPU加速计算设计的云端高性能计算中心,属于软件和信息技术服务业。该平台提供强大的、灵活扩展的GPU资源,广泛应用于机器学习、人工智能及视觉特效渲染等领域。其核心竞争力在于高度定制化的资源分配能力,能够根据具体的工作负载需求精准配置计算资源。无论是最新的NVIDIA RTX 4090、RTX 3090,还是高性能的A100和A800 GPU,平台均能支持各类复杂场景下的计算需求。

2025-01-15 16:26:19 1057

原创 人工智能任务20-利用LSTM和Attention机制相结合模型在交通流量预测中的应用

大家好,我是微学AI,今天给大家介绍一下人工智能任务20-利用LSTM和Attention机制相结合模型在交通流量预测中的应用。交通流量预测在现代城市交通管理中是至关重要的一环,它对优化交通资源分配以及提升道路通行效率有着不可忽视的意义。在实际生活场景中,我们每天都会面临交通出行的问题,比如上下班高峰期道路的拥堵情况。以北京这样的大型城市为例,城市交通流量数据呈现出明显的时间序列特性,而且受到多种复杂因素的影响。像天气状况(晴天、雨天、雾天等)会影响驾驶员的视线和道路的摩擦力,进而影响车速和车流量;

2025-01-15 12:35:59 823

原创 机器学习实战33-LSTM+随机森林模型在股票价格走势预测与买卖点分类中的应用

通过评估指标,我们发现LSTM模型在股票价格预测方面表现出了一定的准确性,而随机森林模型则有效地对LSTM的预测结果进行了分类,提高了买卖点判断的准确性。具体来说,融合后的模型在测试集上的MSE较低,表明价格预测较为准确;同时,准确率、召回率和F1 - score也较高,说明分类效果良好。

2025-01-15 11:41:23 720

原创 人工智能任务19-基于BERT、ELMO模型对诈骗信息文本进行识别与应用

随着信息技术的快速发展,电话通讯已成为日常生活中不可或缺的一部分。然而,伴随而来的电信诈骗问题也日益严重,给个人和社会带来了巨大的损失。为了有效应对这一挑战,自然语言处理(Natural Language Processing, NLP)技术被广泛应用于诈骗电话的自动识别系统中。本文将对基于多种NLP模型的诈骗电话识别进行总体介绍,并探讨BERT、ELMO等前沿模型在该领域的应用前景。

2025-01-14 13:58:52 1111

原创 内网穿透的应用-Kindle用户必看:如何使用浏览器远程下载本地书库电子书到Kindle

今天我要跟大家聊一聊一件超级酷的事情——在本地Windows电脑上搭建一个私有的网络书库服务。在亚马逊的服务停止后,你依然可以在任何有网络的地方随时下载电子书到你的Kindle上,是不是感觉很爽?这可不是什么高深的技术活儿,只要你按照今天的教程一步步来,就能轻松搞定。我们要用的是两款宝藏工具,Calibre是一个功能强大的电子书籍管理软件,可以让你方便地管理和整理你的书库;而 Cpolar 则是一个内网穿透工具,可以帮助你将本地的网络服务暴露到互联网上,这样一来,无论你在哪儿都能访问到你的私有书库。

2025-01-14 09:54:58 590 3

原创 GPU算力平台|在GPU算力平台部署智能媒体生成助手LivePortrait的应用教程

GPU算力平台类似于一个专门为GPU加速计算设计的云端“超级加油站”,属于软件和信息技术服务领域。它为用户提供强大的、可扩展的GPU算力,广泛应用于机器学习、人工智能及视觉特效渲染等高科技领域。该平台的核心优势在于其高度灵活和定制化的资源分配能力,能够根据不同的工作负载需求精确配置计算资源。无论是最新的NVIDIA RTX 4090、RTX 3090,还是高性能的A100和A800 GPU,平台都能满足各种复杂场景下的计算需求。

2025-01-13 16:15:13 1217

原创 GPU算力平台|在GPU算力平台部署Linly-Talker 数字人对话应用教程

GPU算力平台就像是一个专门为GPU加速计算打造的云端“超级加油站”,属于软件和信息技术服务领域。它为用户提供了强大的、可灵活扩展的GPU算力,广泛应用于机器学习、人工智能以及视觉特效渲染等高科技领域。这个平台的最大亮点在于其高度的灵活性和定制化能力,可以根据不同的工作负载需求精准配置计算资源。无论是最新的NVIDIA RTX 4090、RTX 3090,还是高性能的A100和A800 GPU,都能在这里找到,满足各种复杂场景下的计算需求。

2025-01-12 16:00:34 1566 2

原创 GPU算力平台|在GPU算力平台部署Qwen-2通义千问大模型的教程

GPU算力平台是一个专注于GPU加速计算的专业云服务平台,属于软件和信息技术服务业。该平台为用户提供高性能、灵活可扩展的GPU算力服务,适用于机器学习、人工智能、视觉特效渲染等领域。其核心特点是高度可配置性和灵活性,能够根据实际工作负载需求定制计算能力,并提供多种型号的NVIDIA GPU,如RTX 4090、RTX 3090、A100和A800等,以满足不同场景下的计算需求。平台采用Kubernetes原生云设计,针对大规模GPU加速工作负载进行了优化,使用户可以根据项目需求灵活调整计算资源。

2025-01-10 17:10:39 1763 3

原创 内网穿透的应用-Ubuntu本地Docker部署Leantime项目管理工具随时随地在线管理项目

本文主要介绍如何在本地Linux系统使用Docker部署Leantime,并结合cpolar内网穿透工具轻松实现随时随地查看浏览器页面,在线管理自己的数据中心,无需公网IP也不用域名与云服务器。对于许多初创公司和小型团队来说,高效、简便且功能全面的项目管理工具是必不可少的。然而,市面上许多商业项目管理软件不仅价格昂贵,而且操作复杂,让很多团队望而却步。这时,开源的Leantime就成为了众多团队的理想选择。

2025-01-09 16:48:54 804 1

原创 GPU算力平台|在GPU算力平台部署LLama3大模型的详细教程

GPU算力平台是一个专注于GPU加速计算的专业云服务平台,属于软件和信息技术服务业。该平台为用户提供高性能、灵活可扩展的GPU算力服务,适用于机器学习、人工智能、视觉特效渲染等领域。平台的核心特点是高度可配置性和灵活性,能够根据实际工作负载需求定制计算能力。平台提供多种型号的NVIDIA GPU,如RTX 4090、RTX 3090、A100和A800等,满足不同场景下的计算需求。采用Kubernetes原生云设计,针对大规模GPU加速工作负载优化,用户可以根据项目需求灵活调整计算资源。

2025-01-09 11:28:19 1599 5

原创 人工智能GPU加速计算的云服务平台|实际的操作指南与应用

本文将介绍一个专注于GPU加速计算的云服务平台,隶属于软件和信息技术服务业,主要服务于高校、科研机构和企业用户。平台提供多种NVIDIA GPU选项,适用于机器学习、人工智能、视觉特效渲染等领域的应用。

2025-01-07 14:33:00 1521 6

原创 内网穿透的应用-自托管文件分享系统PicoShare搭建流程与远程共享实战教程

大家好!在数字化时代,文件共享变得越来越重要,尤其是在团队协作和个人项目管理中。今天我要向大家分享一个轻量级且强大的工具——PicoShare,并介绍如何在Linux系统本地部署它,再结合Cpolar内网穿透实现公网环境下的远程传输。PicoShare 是由 Go 语言开发的开源文件共享系统,它的设计非常简洁和高效。没有文件大小限制,支持快速下载和直接分享链接,使得 PicoShare 成为一个理想的文件传输解决方案。无论你是个人用户、团队成员还是企业员工,都可以从这个工具中受益匪浅。

2025-01-06 19:42:26 1164 2

深度学习实战41-基于LSTM-GRU模型搭建对糖尿病数据的预测与应用

深度学习实战41-基于LSTM-GRU模型搭建对糖尿病数据的预测与应用,本文将向大家介绍一种基于LSTM-GRU的糖尿病预测模型,包括模型的原理、中文糖尿病csv数据样例、利用PyTorch框架进行模型训练与预测的实现、以及训练过程中准确率和损失值的打印的全流程。 1. 介绍 随着糖尿病患者数量的上升,对糖尿病的预测和控制变得越来越重要。近年来,深度学习方法在时间序列数据的分析上取得了显著的进展,其中基于长短时记忆网络(LSTM)和门控循环单元(GRU)的模型在许多应用中表现优异。本文将介绍一种基于LSTM-GRU的糖尿病预测模型,通过对中文糖尿病csv数据进行分析,利用PyTorch框架进行模型的训练与预测。 2. LSTM与GRU的原理 2.1 LSTM 长短时记忆网络(LSTM)是一种特殊的循环神经网络(RNN),能够学习长序列数据中的依赖关系。LSTM通过引入门控机制解决了传统RNN在处理长序列时梯度消失和梯度爆炸的问题。

2024-06-25

深度学习实战31-开发基于机器学习的在线图像识别工具

深度学习实战31-开发基于机器学习的在线图像识别工具,本文开发一个基于机器学习的在线图像识别工具,用户可以上传一张图片,并得到对应的标签或分类信息。该工具应该支持多种图像类型,例如自然风景、动物、物品等,并且在处理复杂图像时具有良好的准确性和鲁棒性。 本系统支持: 用户能够通过上传图片的方式使用工具,并且工具应该支持常见的图片格式(例如JPEG、PNG等)。 工具应该具有较高的准确率和鲁棒性,能够对复杂图像进行准确的分类或标签识别。 工具支持多种类型的图像分类,例如自然风景、动物、物品等; 工具具有较快的处理速度,对于小型图像可以在数秒内完成处理,而对于大型图像也不会出现过长的等待时间。 工具界面整洁、易于使用,同时支持在桌面端和移动端上正常运行。 工具用gradio简单部署实现,实现上传一张图片,并得到对应的标签或分类信息。

2024-06-25

知识图谱实战应用(30篇)代码全套,代码直接运行

知识图谱实战应用1-知识图谱的构建与可视化应用 知识图谱实战应用2-基于知识图谱的创建语义搜索功能 知识图谱实战应用3-知识推理的应用 知识图谱实战应用4-cypher查询语句 知识图谱实战应用5-从文本关系抽取到知识图谱关系构建流程贯通 知识图谱实战应用10-电影推理的应用 知识图谱实战应用12-食谱领域智能问答系统,实现菜谱问答 知识图谱实战应用12-使用Py2neo构建基于知识图谱的问答系统 知识图谱实战应用13-医疗疾病领域智能问答系统,实现症状问答,支持数据扩展 知识图谱实战应用14-企业相关文件管理领域的应用 知识图谱实战应用15-知识图谱在生物基因学上的应用 知识图谱实战应用16-化学结构领域的应用 知识图谱实战应用17-推荐系统在婚恋交友项目上的实际应用 知识图谱实战应用18-知识图谱结合图神经网络GNN的实战应用,模型搭建与训练 知识图谱实战应用19-基于Py2neo的英语单词关联记忆知识图谱项目 知识图谱实战应用20-中文图书的查询与推荐系统构建 知识图谱实战应用21-华语音乐的推荐系统 知识图谱实战应用22-基于py2neo的金融领域的应用 ...

2024-06-17

深度学习实战34-基于paddle关键信息抽取模型训练的全流程(代码直接运行)

深度学习实战34-基于paddle关键信息抽取模型训练的全流程,我们在文档应用场景中,存在抽取关键信息的任务,比如身份证里的姓名和地址,快递单里的姓名和联系方式等等。传统的方法需要设计模板,但是这太繁琐了,也不够强健。因此,我们使用了飞桨提供的PaddleOCR工具箱中的关键信息抽取方案,可以快速地抽取增值税发票中的关键信息。下面我会手把手教大家训练paddle关键信息抽取模型。 下面我将介绍基于paddle关键信息抽取模型训练的全流程,我们按照步骤进行: 一、标注数据 1.安装软件包 pip install PPOCRLabel 2.安装后使用如下命令启动 PPOCRLabel --lang=ch --kie=True(启动 【KIE 模式】,用于打【检测+识别+关键字提取】场景的标签) ....

2024-01-18

计算机视觉的应用1-OCR分栏识别:两栏识别三栏识别都可以,本地部署完美拼接

OCR的分栏识别功能(直接运行): 在OCR识别过程中,遇到文字是两个分栏的情况确实是一个比较常见的问题。通常情况下,OCR引擎会将文本按照从左到右,从上到下的顺序一行一行地识别。这种方式对于单栏或者少量分栏的文本来说是有效的,但是对于两个或者更多分栏的文本来说就有些棘手了。 在这种情况下,OCR引擎往往会将整个文本当作一行来处理,这就导致了分栏信息的丢失。如果直接将整个文本传递给OCR引擎,那么它会试图将所有的文字一起识别,而没有办法分辨哪些文字属于哪个栏目。 为了解决这个问题,我们需要首先将文本分成两个栏目,然后再分别进行OCR识别。这个过程可以手动完成,也可以借助一些自动化工具。例如,可以使用图像处理算法来检测出文本中的分栏线,然后将文本按照这些线进行分割。

2024-01-18

深度学习实战16(进阶版)-虚拟截图识别文字-可以做纸质合同和表格识别

大家好,我是微学AI,今天给大家带来一个关于虚拟截图识别文字的应用,可以运用在多个领域。案例主要结合Mediapipe手势识别模型,识别出手势的21个关键点的坐标,计算机的摄像头根据食指的坐标信息获取用户想要截取的图片高度与宽度进行截取图形,截取后的图片我们可以通过OCR识别出里面的文字信息,或者进行图像的识别得到图片中的内容信息。 虚拟截图的运用: 通过虚拟截图与OCR结合NLP技术做下游任务,可以用于纸质文件的实体识别,阅读理解,情感分析,机器翻译等。 多领域的应用场景包括: 企业管理领域:可应用于纸质文件中的文字和表格的提取、公司纸质章程完备性识别,纸质合同文件信息提取,实时反馈合同风险信息、企业报表信息提取与分析、重要文件图片截取连接打印机进行局部打印等操作, 教育领域:纸质试卷的批改识别,以及英文论文或书籍的实时翻译等任务。 医学领域:影响报告风险识别、线上视频问诊的药物信息识别采集。

2023-05-04

深度学习实战14(进阶版)-手写文字OCR识别,手写笔记也可以识别了

大家好,我是微学AI,今天给大家带来手写OCR识别的项目。手写的文稿在日常生活中较为常见,比如笔记、会议记录,合同签名、手写书信等,手写体的文字到处都有,所以针对手写体识别也是有较大的需求。目前手写体的识别相比印刷体识别率不是太高,主要有以下几个难点: 中文汉字字符级别的类别较多; 手写体字符的书写随意性较大, 比如连笔字、草书、行书字体 每个人的书写风格不一样

2023-05-04

深度学习实战13(进阶版)-文本纠错功能,经常写错别字的小伙伴的福星

大家好,我是微学AI,我们在日常生活中,经常会写一些文稿,比如:会议纪要,周报,日报,汇报材料,这些文稿里我们会发现有时候出现拼写、语法、标点等错误;其中拼写错误的错别字占大部分。 经过初步统计:在微博等新媒体领域中,文本敏感和出错概率在2%左右;怎样才能快速解决这个错误问题呢,让机器帮我们找错别字,因为有时候自己写的文章,比较不容易找出错误,如果找出来需要反复通读全文,这也是很费时的一件事情。 资料中用NLP中的文本纠错功能来初步解决这个问题,文本纠错作为自然语言处理最基础的模块,是实现中文语句自动检查、自动纠错的一项重要的自然语言处理技术。

2023-05-04

深度学习实战12(进阶版)-利用Dewarp实现文本扭曲矫正

大家好,我是微学AI, 今天给大家介绍一下深度学习实战12(进阶版)-利用Dewarp实现文本扭曲矫正,我们在生活中会看到一些拍摄扭曲的图片,我们在通过OCR识别的时候,因为扭曲的厉害,而无法识别,我们需要对图片进行处理。 文件图像的变形有扭曲、折叠、褶皱、透视等多种情况,解决方案可以分为参数化方法和非参数化方法。参数化方法构建只能处理简单场景的低维度的数学模型。在非参数方法中,通常需要创建一对数据集。

2023-05-04

深度学习实战9-文本生成图像-本地电脑实现text2img

今天给大家带来一个文本生成图像的案例。让大家都成为艺术家,自己电脑也能生成图片 ,该模型它能让数十亿人在几秒钟内创建出精美的艺术。 Stable Diffusion模型包括两个步骤: 前向扩散——通过逐渐扰动输入数据将数据映射到噪声。这是通过一个简单的随机过程正式实现的,该过程从数据样本开始,并使用简单的高斯扩散核迭代地生成噪声样本。此过程仅在训练期间使用,而不用于推理。 参数化反向——撤消前向扩散并执行迭代去噪。这个过程代表数据合成,并被训练通过将随机噪声转换为真实数据来生成数据。

2023-03-23

深度学习实战8-生活照片转化漫画照片应用

今天给大家带来一个生活照片转化漫画照片实战案例 让大家不要花钱去找人设计漫画照片了,这个是设计头像神器,很赶时髦,输入人物的图片就可生成漫画图片。 图像生成的过程就是利用对抗神经网络原理构建。本模型是利用CartonRenderer自动编码器,模型网络将输入图像映射到特征空间。与Adain 6和MUNIT 7中使用的传统编码器不同,我们的建模网络将输入图像映射到多尺度特征空间,是单个固定比例要素空间的。CartonRenderer的参数优化部分是由四个S-AdaIN块组成,对应于特征模型。每个S-AdaIN块用于对齐相应的刻度。其过程还是相对复杂的。

2023-03-23

深度学习实战5-卷积神经网络(CNN)中文OCR识别项目,代码+数据集,可直接运行

资源给大家带来一个利用卷积神经网络(CNN)进行中文OCR识别,实现自己的一个OCR识别工具。 一个OCR识别系统,其目的很简单,只是要把影像作一个转换,使影像内的图形继续保存、有表格则表格内资料及影像内的文字,一律变成计算机文字,使能达到影像资料的储存量减少、识别出的文字可再使用及分析,这样可节省人力打字的时间。

2023-02-23

深度学习实战7-电商产品评论的情感分析,代码+数据集,可直接运行

资源给大家带来一个京东商品评论的情感分析与预测实战案例。 进几年网上购物越来越流行,在加上疫情的缘故,很多人足不出户,使得更多人选择网购。这让京东、淘宝、拼多多等电商平台得到了很大的发展机遇。但是,这种需求也引发了更多的店商平台的激列竞争。在这种电商平台激烈竞争的大背景下,除了提高商品质量、压低商品价格外。了解更多消费者的心声对干店商平台来说也变得越来越有必要,其中非常重要的方式就是对消费者的文本评论等非结构化的数据进行内在信息的数据挖掘和分析,有利于对应商品的生产厂家自身竞争力的提升。 对某商品的评论进行文本挖掘分析,目的是分析用户对某商品的情感倾向,从商品评论中挖掘产品的优点和缺点,提炼出不同品牌商品的卖点。

2023-02-23

深度学习实战6-卷积神经网络(Pytorch)+聚类分析实现空气质量与天气预测,数据集+代码,可直接运行

资源给大家带来一个利用卷积神经网络(pytorch版)实现空气质量的识别分类与预测。 我们知道雾霾天气是一种大气污染状态,PM2.5被认为是造成雾霾天气的“元凶”,PM2.5日均值越小,空气质量越好. 空气质量评价的主要污染物为细颗粒物(PM2.5)、可吸入颗粒物(PM10)、二氧化硫(SO2)、二氧化氮(NO2)、臭氧(O3)、一氧化碳(CO)等六项。

2023-02-23

深度学习实战4-卷积神经网络(DenseNet)数学图形识别+题目模式识别的 源码与数据集,代码可直接运行

大家好,今天给大家带来一个卷积神经网络(CNN)数学图形识别项目(简单入门版),这个是人工智能解题的基础,机器首先通过题目识别出题目中的文字和图形,读懂题目的含义,这个是个相对复杂的过程。就在今年的1月4日,麻省理工学院等四所高校的联合研究团队,发布了一项最新研究成果:他们开发了一个神经网络,可以解答出微积分、线性代数等大学数学题。不管是要求计算数值,还是写方程式,或者画出函数图形,都能轻易解答,正确率达到了100%。要知道,在短短几个月前,人工智能解答类似的题,最高正确率不到10%。

2022-12-19

深度学习实战3-文本卷积神经网络(TextCNN)新闻文本分类的源码与数据集,可直接运行

中文新闻分类模型,利用TextCNN模型进行训练,TextCNN的主要流程是:获取文本的局部特征:通过不同的卷积核尺寸来提取文本的N-Gram信息,然后通过最大池化操作来突出各个卷积操作提取的最关键信息,拼接后通过全连接层对特征进行组合,最后通过交叉熵损失函数来训练模型。

2022-12-19

深度学习实战10,数学公式识别-将图片转换为Latex的权重文件

一个关于数学公式识别的实战案例,解决大家在写论文中遇到很多latex输入的问题,而且可以无限次识别哦,因为是代码实现,不用调用外部API。 本资源是数学公式识别-将图片转换为Latex的权重文件,可以下载直接载入它,就可以进行数学公式识别了。 操作步骤: 运行程序之前,我们要下载训练好的权重参数文件weights.pth,可以私信发给大家,或者 download weights v0.0.1 to path '本地地址信息', 下载好的权重文件放在checkpoints 文件夹下面。 安装库脚本:pip3 install pix2tex[gui] -i https://pypi.tuna.tsinghua.edu.cn/simple some-package 安装好后,我们可以直接运行 gui.py,我们就可以直接通过截图识别啦。识别效果如下:

2022-11-25

深度学习+机器学习实战数据集

深度学习+机器学习实战数据集全套: 机器学习实战1-四种算法对比对客户信用卡还款情况进行预测.csv 深度学习实战1-(keras框架)企业数据分析与预测.csv 深度学习实战2-(keras框架)企业信用评级与预测.xls 深度学习实战3-文本卷积神经网络(TextCNN)新闻文本分类 深度学习实战6-卷积神经网络(Pytorch)+聚类分析实现空气质量.csv 深度学习实战7-电商产品评论的情感分析.csv ....

2022-11-23

深度学习实战6-实现空气质量与天气预测数据集

主要内容:以上是实现空气质量与天气预测的数据集 适合人群:深度学习初学者 大家可以看深度学习实战6的案例,利用卷积神经网络(pytorch版)实现空气质量的识别分类与预测。 我们知道雾霾天气是一种大气污染状态,PM2.5被认为是造成雾霾天气的“元凶”,PM2.5日均值越小,空气质量越好.

2022-05-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除