-
进入
anaconda prompt
命令行,创建一个独立运行的环境(否则很容易安装失败
),然后激活这个环境.conda create -n pytorch_gpu pip python=3.6
conda activate pytorch_gpu
-
为了提升安装的速度,可以使用国内镜像来下载安装包。
阿里云的源
conda config --add channels http://mirrors.aliyun.com/pypi/simple/ -
进入pytorch官网,选择适合自己的版本,我选择的是Stable(1.3)、Windows、Conda、Python3.6、10.1,输入下面的命令。
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
- 看到下面的图说明安装完毕。
-
验证一下是否安装成功,先输入
python
,进入python环境,然后直接输入下面的命令。from future import print_function
import torch
x = torch.rand(5, 3)
print(x)
import torch
torch.cuda.is_available()如果打印出下面的内容,说明安装成功。
tensor([[0.3380, 0.3845, 0.3217], [0.8337, 0.9050, 0.2650], [0.2979, 0.7141, 0.9069], [0.1449, 0.1132, 0.1375], [0.4675, 0.3947, 0.1426]]) True
-
输入
exit()
退出python环境,回到了pytorch_gpu
虚拟环境中。为了能在juputer notebook中使用该虚拟环境,需要安装下面的程序。conda install nb_conda_kernels
打印如下内容时,说明安装完毕。
-
输入
jupyter notebook
命令,在New
下拉菜单中选择conda env:pytorch_gpu
虚拟环境创建新文件。
输入如下命令from __future__ import print_function import torch x = torch.rand(5, 3) print(x) import torch torch.cuda.is_available()
如果打印如下信息,说明安装成功,可以通过虚拟环境使用pytorch了。
如果是已存在的文件,通过kernel下的Change kernel下选择自己要用的环境