- 博客(327)
- 收藏
- 关注
原创 【计算机视觉】Pixel逐像素分类&Mask掩码分类理解摘要
目标检测和实例分割是计算机视觉的基本任务。目标检测的传统方法中通常利用边界框技术进行对象定位,然后利用逐像素分类为这些本地化实例分配类。但是当处理同一类的重叠对象时,或者在每个图像的对象数量不同的情况下,这些方法通常会出现问题。Faster R-CNN、Mask R-CNN等经典方法虽然有效,但由于其固定大小的输出空间,它们通常预测每个图像的边界框和类的固定数量,这可能与图像中实例的实际数量不匹配,特别是当不同图像的实例数量不同时。并且它们可能无法充分处理相同类的对象重叠的情况,从而导致分类不一致。
2025-08-30 12:47:13
2040
原创 【Pytorch】生成对抗网络实战
本文介绍了基于STL-10数据集的GAN实现过程。首先构建了包含5层反卷积层的生成器模型和5层卷积层的鉴别器模型,使用Adam优化器和BCE损失函数进行对抗训练。训练过程中生成器和鉴别器不断优化,经过1000个epoch后保存模型权重。最后部署生成器模型,输入随机噪声生成了16张64x64的RGB图像。实验表明,针对单类别数据训练或延长训练时间可进一步提升生成质量。整个流程完整展示了GAN从数据准备、模型构建到训练部署的全过程。
2025-08-30 12:46:47
2904
1
原创 人工智能基础概念
人工智能主要分为三大学派,符号主义靠人工赋予智能,联结主义靠机器自行习得智能,行为主义在与环境的作用和反馈中获得智能。Tensorflow、Pytorch等不断迭代,更易用、更全能的开发框架投入使用,降低开发门槛。BERT、GPT、XLNet等开始广泛应用于工业场景,性能更优,体积更小的算法模型是大势所趋。安全聚合、差分隐私、同态加密......更完善的基础数据服务产业,更安全的数据共享指日可待。的理论、方法、技术及应用系统的一门新的技术科学。问诊机器人、智能音箱、语音识别、语音合成、音频检测等。
2025-08-29 15:08:43
2206
1
原创 【PyTorch】神经风格迁移项目
摘要:本文介绍了神经风格迁移的实现过程,通过结合内容图像和风格图像生成新图像。首先进行数据准备和处理,使用VGG19预训练模型提取特征,定义内容损失和风格损失函数。通过优化器迭代调整输入图像,在300轮训练中平衡内容保留与风格转换。最终输出图像既保留了原内容的结构特征,又成功融入了艺术风格元素。实验结果表明该方法能有效实现风格迁移,生成具有艺术美感的合成图像。
2025-08-29 15:07:14
843
原创 【PyTorch】基于YOLO的多目标检测项目(二)
本文介绍了基于PyTorch实现YOLOv3多目标检测项目的完整流程。项目使用416x416输入图像,构建包含卷积层、上采样层和跳跃连接的DarkNet模型,通过三个YOLO输出层进行目标检测。文章详细讲解了配置文件解析、模型搭建、损失函数定义(包含坐标、置信度和分类损失)以及训练过程(使用Adam优化器和学习率调度器)。实验部分展示了在COCO数据集上的训练结果,并演示了如何加载训练好的权重进行目标检测。整个项目采用模块化设计,包含数据预处理、模型构建、训练和部署全流程。
2025-08-28 14:05:44
1267
原创 【PyTorch】基于YOLO的多目标检测项目(一)
完成数据集下载后,使用PyTorch的Dataset和Dataloader类创建训练和验证数据集和数据加载器。import os#定义CocoDataset类,并展示来自训练和验证数据集的一些示例图像# 从coco_train中获取图像、标签和图像路径x,y,w,h=bb定义两个用于训练和验证数据集的数据加载器,从coco_train和coco_val中获取小批量数据。
2025-08-28 14:05:21
2197
原创 简明 | Yolo-v3结构理解摘要
DBL,即Darknetconv2d_BN_Leaky,就是conv+BN(Batch Normalization)+Leaky relu,三者共同构成组件。除最后一层卷积层外,BN和leaky relu与卷积层完整绑定。Res-n,即残差模块,n表示这个Res-block里含有多少个Res-unit。yolo-v3首次借鉴ResNet的残差结构,让网络更深,例如从v2的darknet-19到v3的darknet-53。
2025-08-27 10:48:52
1445
原创 简明 | ResNet特点、残差模块、残差映射理解摘要
使用BN(Batch Normalization)层加速训练,解决梯度消失/梯度爆炸问题引入residual残差结构,减轻退化问题,可以搭建超深度网络结构(超1000层)。
2025-08-27 10:48:33
1092
原创 似然函数&对数似然函数&负对数似然函数
似然函数Lθ∣XLθ∣X是在给定参数θ\thetaθ下,观测数据XXX出现的概率。它是统计推断中的一个核心概念,用于衡量在特定参数假设下,观测数据的合理性。假设我们有一组观测数据Xx1x2xnXx1x2xn,并且假设这些数据是独立同分布的iid(i.i.d.)iidLθ∣X∏i1nPxi∣θLθ∣Xi1∏nPxi∣θθ\thetaθ。
2025-08-26 15:45:24
1223
原创 【一文理解】下采样与上采样区别
对图像进行1/n下采样,原图像分辨率为H*W,下采样分辨率变为(H/n)*(W/n)对图像进行n上采样,原图像分辨率为H*W,下采样分辨率变为(nH)*(nW)转置卷积是卷积的一种,可使图片恢复成卷积前的尺寸,但是对应像素点的数值改变。主要通过是池化层或卷积层进行下采样。过滤无关信息,保留关键信息。反向提取特征,还原关键信息。上采样不是下采样的逆操作。
2025-08-26 15:45:07
2241
原创 【PyTorch】图像多分类项目部署
本文介绍了使用PyTorch部署图像多分类模型的过程。首先构建ResNet18模型,加载预训练权重并设置为评估模式。然后定义部署函数,在验证集上测试模型性能,计算平均推理时间。数据集采用STL10,通过分层抽样划分为验证集和测试集。结果显示,模型在验证集上的准确率达到0.89。最后随机选取16张测试图像进行可视化展示,直观呈现模型预测效果。整个流程包括模型加载、数据预处理、性能评估和结果可视化等关键步骤,为图像分类任务提供了完整的部署解决方案。
2025-08-25 11:53:04
827
原创 【PyTorch】图像多分类项目
本文介绍了使用PyTorch进行多类图像分类的完整流程。首先使用STL-10数据集(10个类别)加载和处理数据,包括数据增强和归一化处理。然后分别搭建了随机权重初始化和预训练权重的ResNet18模型,定义交叉熵损失函数和Adam优化器。通过训练验证脚本实现了模型训练过程,包括学习率调度、损失计算和权重保存。实验结果表明,预训练模型相比随机初始化模型能更快收敛并获得更好的性能。文章提供了完整代码实现,涵盖数据可视化、模型构建、训练策略等关键环节,为图像分类任务提供了实践参考。
2025-08-25 11:52:43
5662
1
原创 求解一次最佳平方逼近多项式
本文求解函数$f(x)=\sqrt{1+x^2}$在区间$[0,1]$上的最佳一次平方逼近多项式。通过计算积分得到系数方程组,解得最佳逼近多项式为$S_1^*(x)=0.934+0.426x$。计算得到平方误差为0.0026,最大误差约为0.066。该多项式较好地逼近了原函数在给定区间上的表现。
2025-08-23 17:19:15
1181
原创 Hermite 插值
Hermite插值是一种高阶插值方法,不仅要求插值多项式在节点处的函数值与原函数相等,还要求导数值也相等。给定n+1个节点及其对应的函数值和导数值,共2n+2个条件,可以唯一确定一个次数不超过2n+1的多项式H(x)。该多项式能同时满足H(x_j)=y_j和H'(x_j)=m_j的条件,适用于需要更高精度逼近的情况。
2025-08-23 17:19:00
772
原创 勒让德多项式
勒让德多项式是在区间[-1,1]上由{1,x,...,x^n,...}正交化得到的一组正交多项式,记作Pₙ(x)。其递推公式为:(n+1)Pₙ₊₁(x)=(2n+1)xPₙ(x)-nPₙ₋₁(x)。前几项为:P₀(x)=1,P₁(x)=x,P₂(x)=(3x²-1)/2,P₃(x)=(5x³-3x)/2,P₄(x)=(35x⁴-30x²+3)/8等。勒让德多项式在数学物理中有重要应用。
2025-08-22 11:11:32
1517
原创 求解插值多项式及其余项表达式
本文构造了一个带导数条件的3次插值多项式。通过给定三个节点的函数值和一个节点的导数值,确定了多项式表达式中的待定系数A。利用差分商和导数条件,给出了A的具体表达式。为求余项,引入辅助函数φ(t),应用Rolle定理证明了存在ξ使得余项可表示为R(x)=f^(4)(ξ)(x-x0)(x-x1)²(x-x2)/4!,其中ξ在相关节点范围内。这一结果给出了带导数条件的插值多项式及其误差估计。
2025-08-22 11:11:12
2074
原创 DataFrame中.iloc 属性
iloc是 Pandas 库中 DataFrame 和 Series 对象的一个属性,用于基于整数位置的索引来选择数据。与基于标签的.loc索引不同,.iloc使用从 0 开始的整数位置来访问行和列。这对于处理需要按位置而不是按标签选择数据的场景非常有用。
2025-08-21 15:57:13
1396
原创 【解决办法】最新0.13.2Seaborn未以关键字参数传递数据,报错kdeplot() takes from 0 to 1 positional arguments but 2 were given
新版Seaborn中kdeplot()函数报错TypeError的解决方法:在0.13.2版本中,绘制二维核密度图时需使用关键字参数传递数据,如sns.kdeplot(x=x_data,y=y_data),而非位置参数。添加shade和cmap参数可美化图形。该问题源于新版对参数传递方式的严格要求。
2025-08-21 15:56:58
554
原创 【PyTorch】多对象分割项目
对象分割任务的目标是找到图像中目标对象的边界。实际应用例如自动驾驶汽车和医学成像分析。这里将使用PyTorch开发一个深度学习模型来完成多对象分割任务。多对象分割的主要目标是自动勾勒出图像中多个目标对象的边界。对象的边界通常由与图像大小相同的分割掩码定义,在分割掩码中属于目标对象的所有像素基于预定义的标记被标记为相同。
2025-08-20 14:29:04
2619
1
原创 【PyTorch】单对象分割项目
对象边界通常由二进制掩码定义。通过二进制掩码,可以在图像上覆盖轮廓以勾勒出对象边界。例如以下图片描绘了胎儿的超声图像、胎儿头部的二进制掩码以及覆盖在超声图像上的胎儿头部的图像分割:
2025-08-20 14:28:41
1141
原创 【PyTorch】图像二分类项目-部署
本文介绍了使用PyTorch进行图像二分类项目的完整流程。首先构建了一个包含4个卷积层和2个全连接层的CNN模型,实现了卷积层输出形状计算函数。模型训练完成后,详细说明了如何将模型部署到新的推理脚本中,包括定义模型结构、加载预训练权重、进入评估模式等步骤。文章还展示了数据集处理、训练/验证集划分、模型性能评估(准确率达95%)以及测试集预测等关键环节。最后通过可视化函数展示了测试集上的预测结果,完整呈现了从模型构建到实际应用的全过程。
2025-08-18 11:33:27
854
原创 【PyTorch】图像二分类项目
处理数据集的传统方法是将所有图像加载到 NumPy 数组中,但这种方法在处理一个相对较大的数据集时会显著浪费计算机资源,尤其对于RAM有限的计算机。PyTorch 可以通过子类化 PyTorch Dataset 类来创建自定义 Dataset 类来解决这个问题。创建自定义 Dataset 类时,需定义两个基本函数:__len__ 和 __getitem__。__len__ 函数返回数据集的长度,__getitem__ 函数返回指定索引处的图像。import os# 设置随机种子# 定义一个数据集类。
2025-08-18 11:33:04
7823
原创 【SQL】进店未消费的顾客
左连接left join Transactions T on V.visit_id =T.visit_id,条件null,where transaction_id is null。需要每个客户只光顾不交易的次数,group by customer_id,count(customer_id),命名为count_no_trans。ID = 23 的顾客曾经逛过一次购物中心,并在 ID = 12 的访问期间进行了一笔交易。ID = 9 的顾客曾经逛过一次购物中心,并在 ID = 13 的访问期间进行了一笔交易。
2025-08-16 12:07:31
1140
原创 【SQL】产品销售分析 I
product_id 是关联到产品表 Product 的外键(reference 列)。(sale_id, year) 是销售表 Sales 的主键(具有唯一值的列的组合)。连接id和name :ON s.product_id = p.product_id。需要p.product_name , s.year , s.price。该表的每一行显示 product_id 在某一年的销售情况。product_id 是表的主键(具有唯一值的列)。该表的每一行表示每种产品的产品名称。编写解决方案,以获取。
2025-08-16 12:07:17
895
原创 Data Augmentation数据增强
数据增强是通过对训练数据进行合理变换来增加数据多样性的技术,分为有监督和无监督两大类。有监督增强包括单样本变换(如几何/颜色变换)和多样本组合(如SMOTE、mixup);无监督增强则包含随机生成(如GAN)和学习策略(如AutoAugment)。该方法能有效解决数据不足问题,防止模型学习不相关特征,例如通过随机变换车辆图片的视角、颜色等无关特征来提升车型识别效果。
2025-08-15 11:43:37
602
原创 Encoder-Decoder Model编码器-解码器模型
摘要:编码器-解码器是一种深度学习模型,由编码器和解码器组成,用于处理序列到序列的任务。编码器将输入序列转换为固定长度的上下文向量,解码器将其转换为输出序列。该模型通过RNN、LSTM或GRU等循环结构实现,并引入注意力机制提高性能。工作流程包括输入编码、上下文向量生成和输出解码。广泛应用于机器翻译、图像处理等领域,能有效处理可变长度序列。
2025-08-15 11:43:20
1080
原创 【k近邻】 K-Nearest Neighbors算法汇总
K近邻算法是一种基于实例的简单分类方法,其核心思想是"少数服从多数"。算法通过计算待分类点与训练集中各点的距离,选取最近的K个邻居,根据这些邻居的多数类别决定待分类点的归属。关键要素包括距离度量选择(如欧式距离)、数据归一化(避免特征权重失衡)和K值选择(需平衡模型复杂度与误差)。K近邻的主要优点是精度高、对异常值不敏感,但计算和空间复杂度较高,且K值选择不当易导致过拟合或欠拟合。合理选择K值通常采用交叉验证方法。
2025-08-14 11:11:05
1125
原创 【k近邻】Kd树构造与最近邻搜索示例
(4)如此递归,最后得到如上图所示的特征空间划分和如下图所示的。的区域与圆不相交,不可能有最近邻点,故继续返回上一级父结点。树可以省去对大部分数据点的搜索,从而减少搜索的计算量。将空间分为左、右两个子矩形(子结点);该区域在圆内的实例点有点。维空间中的数据进行快速检索的数据结构。维空间划分中的一个超矩形区域,利用。,使用kd树的最近邻搜索算法可以求得。维空间的一个划分,其每个结点对应于。例: 给定一个二维空间的数据集,(图中的右下区域), 以点。更近,成为新的最近邻近似;的区域内搜索最近邻,结点。
2025-08-14 11:10:32
798
原创 【k近邻】 K-Nearest Neighbors算法距离度量选择与数据维度归一化
(K-Nearest Neighbors,简称KNN)是一种常用的监督学习算法,可以用于分类和回归问题。在OpenCV中,KNN算法的函数为`cv.ml.KNearest_create()。
2025-08-13 11:12:44
832
原创 【k近邻】 K-Nearest Neighbors算法原理及流程
(K-Nearest Neighbors,简称KNN)是一种常用的监督学习算法,可以用于分类和回归问题。在OpenCV中,KNN算法的函数为`cv.ml.KNearest_create()。
2025-08-13 11:12:33
701
原创 【k近邻】Kd树的构造与最近邻搜索算法
Kd树是一种对K(与k近邻的k意义不同)维空间中的实例点进行存储以便对其进行快速检索的树形数据结构。Kd树是一种二叉树,表示对K维空间的一个划分(partition)。构造Kd树相当于不断地用垂直于坐标轴的超平面将K维空间切分,构成一 系列的K维超矩形区域。Kd树的每个结点对应于一个k维超矩形区域。
2025-08-12 10:33:56
1163
原创 【k近邻】 K-Nearest Neighbors算法k值的选择
(K-Nearest Neighbors,简称KNN)是一种常用的监督学习算法,可以用于分类和回归问题。在OpenCV中,KNN算法的函数为`cv.ml.KNearest_create()。
2025-08-12 10:33:04
733
原创 【PyTorch】单目标检测项目部署
详细参照前文【PyTorch】单目标检测项目import os# 定义一个函数,用于将a列表中的元素除以b列表中的对应元素,返回一个新的列表# 使用zip函数将a和b列表中的元素一一对应# 返回新的列表return div# 定义一个函数,用于将a列表中的元素乘以b列表中的对应元素,返回一个新的列表# 使用zip函数将a和b列表中的元素一一对应# 返回新的列表return div# 定义一个函数,用于调整图像和标签的大小# 获取原始图像的宽度和高度# 获取目标图像的宽度和高度。
2025-08-11 10:15:29
1013
原创 【PyTorch】单目标检测项目
将中央凹中心预测为眼睛图像中的x和y坐标,构建一个由多个卷积层和池化层组成的模型。该模型将接收调整好的RGB图像,提供与中央凹坐标相对应的两个线性输出。模型将利用ResNet论文Deep Residual Learning for Image Recognition中介绍的skip connection跳跃连接技术。
2025-08-11 10:15:11
4036
2
原创 【感知机】感知机(perceptron)学习算法知识点汇总
设输入空间(特征空间),输出空间。输入表示实例的特征向量,对应于输入空间的点,输出表示实例的类别,由输入空间到输出空间的函数称为。
2025-08-09 09:46:12
3951
原创 【感知机】感知机(perceptron)学习算法例题及详解
本文介绍了感知机的基本概念及其学习算法。感知机是一种二类分类的线性模型,通过分离超平面实现分类。文章详细阐述了感知机学习的思路,包括误分类损失函数和梯度下降法。重点比较了原始形式和对偶形式两种算法,并通过两个实例演示计算过程。结果表明,感知机算法的解不唯一,取决于初始值和误分类点顺序。最后指出对偶形式与原始形式结果一致,且都能收敛到有效解。
2025-08-09 09:45:42
4166
原创 【感知机】感知机(perceptron)学习算法的收敛性
摘要:感知机是一种二类线性分类模型,通过分离超平面划分实例类别。其学习过程包括构建损失函数、梯度下降优化等步骤,可分为原始形式和对偶形式。当训练数据线性可分时,感知机算法能在有限次迭代后收敛,找到完美分类超平面。Novikoff定理从理论上证明了感知机算法的收敛性。
2025-08-08 12:29:02
671
原创 【感知机】感知机(perceptron)学习算法的对偶形式
感知机是一种二类分类的线性模型,通过分离超平面将实例划分为正负两类。其学习算法基于误分类损失函数,采用梯度下降法进行优化,可分为原始形式和对偶形式。对偶形式通过Gram矩阵存储实例内积,将参数表示为实例的线性组合。实例的更新次数反映了其分类难度,对学习结果影响较大。感知机为神经网络和支持向量机的基础模型。
2025-08-08 12:28:40
812
原创 【感知机】感知机(perceptron)学习策略
摘要:感知机是一种二分类线性模型,通过分离超平面划分特征空间。其学习目标是在线性可分条件下找到最优超平面,采用误分类点距离作为损失函数。该损失函数在误分类时为参数的线性函数,正确分类时为0,是连续可导的。感知机为神经网络和支持向量机的基础,通过最小化误分类点总距离来优化参数。
2025-08-07 15:12:37
734
原创 【感知机】感知机(perceptron)模型与几何解释
本文介绍了感知机的基本概念与应用。感知机是一种二类线性分类模型,通过分离超平面划分特征空间,输出类别为+1或-1。文章详细阐述了感知机模型定义、几何解释(超平面法向量和截距)及数据集线性可分性的判别标准。同时概述了感知机的学习策略:基于误分类的损失函数,采用梯度下降法进行参数优化,最终得到分类模型。感知机作为神经网络与支持向量机的基础,其学习算法包括原始形式和对偶形式两种。
2025-08-07 15:12:20
719
HCCDA – AI华为云人工智能开发者认证60判断题及答案.docx
2023-09-13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人