1. 数据类型详细介绍
类型的基本归类
- 整形
2.浮点型
double
float
3.构造类型:
数组类型
结构体类型 struct枚举类型 enum
联合类型 union
4.指针类型
int pi;
char pc;
float pf;
void pv;
5.空类型:
void表示空类型
通常应用于函数的返回类型,函数的参数,指针的类型
2. 整形在内存中的存储:原码、反码、补码
原码
直接将二进制按照正负数的形式翻译成二进制。
反码
直接将二进制按照正负数的形式翻译成二进制。
补码
反码+1就得到补码。
1.正数的原、反、补码都相同。
2.对于整形来说:数据数据存放内存中其实存放的是补码。
3. 大小端字节序介绍及判断
大小端的含义
大端(存储)模式,是指数据的低位保存在内存的
高地址
中,而数据的高位,保存在内存的低地址
中;
小端(存储)模式,是指数据的低位保存在内存的低地址
中,而数据的高位,,保存在内存的高地址
中
为什么有大端和小端
为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为
8bit
。但是在C语言中除了8bit
的char之外,还有16bit的short型
,32bit的long型
(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位
的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如果将多个字节安排的问题。因此就导致了大端
存储模式和小端
存储模式。
4. 浮点型在内存中的存储解析
例子:
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0; }
输出结果
num 和 *pFloat 在内存中明明是同一个数,但是浮点数和整数的解读结果会差距很大。
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
举例来说: 十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。 那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,s=1,M=1.01,E=2。
IEEE 754规定: 对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
IEEE 754对有效数字M和指数E,还有一些特别规定。 前面说过, 1≤M<2 ,也就是说,M可以写成1.xxxxxx
的形式,其中xxxxxx
表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。
比如保存1.01的时候,只保存01,
等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。
以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E
首先,E为一个无符号整数(unsigned int) 这意味着,如果E为8位,它的取值范围为0255;如果E为11位,它的取值范围为02047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E 是10,所以保存成32位浮点数时,必须保存成==10+127=137,即10001001。==然后,指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。 比如: 0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值, 有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);