时间复杂度和空间复杂度

4 篇文章 0 订阅
2 篇文章 0 订阅

时间复杂度

时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的·执行次数·,为算法的时间复杂度

大O的渐进表示法

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数
大O的渐进表示法。
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

举例说明

常数阶

  // O(1)
    private static void swap(Object[] arr, int i, int j){
        if(i < 0 || i >= arr.length)
            throw new IllegalArgumentException("i is out of bound.");
        if(j < 0 || j >= arr.length)
            throw new IllegalArgumentException("j is out of bound.");
        Object temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

线性阶

  // O(N)
    private static int sum(int n){
        if(n < 0)
            throw new IllegalArgumentException("n should be greater or equal to zero.");
        int ret = 0;
        for(int i = 0 ; i <= n ; i ++)
            ret += i;
        return ret;
    }

上面算法循环体中的代码执行了n次,因此时间复杂度为O(n)。

对数阶

  // O(logN)
    private static int binarySearch(Comparable[] arr, int n, int target){
        int l = 0, r = n-1;
        while( l <= r ){
            int mid = l + (r-l)/2;
            if(arr[mid].compareTo(target) == 0) return mid;
            if(arr[mid].compareTo(target) > 0) r = mid - 1;
            else l = mid + 1;
        }
        return -1;
    }

平方阶

  // N ^ 2
    private static void selectionSort(Comparable[] arr, int n){
        for(int i = 0 ; i < n ; i ++){ // N
            int minIndex = i;
            for(int j = i + 1 ; j < n ; j ++) // N
                if(arr[j].compareTo(arr[minIndex]) < 0)
                    minIndex = j;

            swap(arr, i, minIndex);
        }
    }

其他复杂度

除了常数阶、线性阶、平方阶、对数阶,还有如下时间复杂度:
f(n)=nlogn时,时间复杂度为O(nlogn),可以称为nlogn阶
f(n)=n³时,时间复杂度为O(n³),可以称为立方阶
f(n)=2ⁿ时,时间复杂度为O(2ⁿ),可以称为指数阶
f(n)=n!时,时间复杂度为O(n!),可以称为阶乘阶
f(n)=(√n时,时间复杂度为O(√n),可以称为平方根阶

复杂度的比较

在这里插入图片描述

其中x轴代表n值,y轴代表T(n)值(时间复杂度)。T(n)值随着n的值的变化而变化,其中可以看出O(n!)和O(2ⁿ)随着n值的增大,它们的T(n)值上升幅度非常大,而O(logn)、O(n)、O(nlogn)随着n值的增大,T(n)值上升幅度则很小。
常用的时间复杂度按照耗费的时间从小到大依次是:

O(1)<O(logn)<O(n)<O(nlogn)<O(n²)<O(n³)<O(2ⁿ)<O(n!)

空间复杂度

基本概念

简单来说空间复杂度是,程序运行时额外开辟空间的大小

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度
类似,也使用大O渐进表示法

*大O渐进表示法

O(1)

// 计算bubbleSort的空间复杂度?
void bubbleSort(int[] array) {
for (int end = array.length; end > 0; end--) {
     boolean sorted = true;
     for (int i = 1; i < end; i++) {
         if (array[i - 1] > array[i]) {
             Swap(array, i - 1, i);
             sorted = false;
         }
     }
     if (sorted == true) {
         break;
     }
 }
}

O(N)

// 计算fibonacci的空间复杂度?
int[] fibonacci(int n) {
long[] fibArray = new long[n + 1];
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; i++) {
  fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
return fibArray; }

O(N)

// 计算阶乘递归Factorial的时间复杂度?
long factorial(int N) {
 return N < 2 ? N : factorial(N-1)*N; }
  1. 实例1使用了常数个额外空间,所以空间复杂度为 O(1)
  2. 实例2动态开辟了N个空间,空间复杂度为 O(N)
  3. 实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值