排序:
默认
按更新时间
按访问量

关于java用jni调用 dll动态库Can't find dependent libraries错误的解决

ref:http://sylar029.iteye.com/blog/1171260  最近在做一些java开发的时候,需要调用操作系统底层的一些东西,所以我用c++ 写了一个dll动态库文件,通过java的JNI进行调用。dll 文件生成之后 在本机用java调用没有问题,  ...

2014-11-14 14:07:02

阅读数:974

评论数:0

变分推断(variational inference)学习笔记(1)——概念介绍

ref:http://www.crescentmoon.info/?p=709#more-709 问题描述 变分推断是一类用于贝叶斯估计和机器学习领域中近似计算复杂(intractable)积分的技术,它广泛应用于各种复杂模型的推断。本文是学习PRML第10章的一篇笔记,错误或不足的地...

2014-11-13 21:04:31

阅读数:7732

评论数:0

变分推断学习笔记(2)——一维高斯模型的例子

ref:http://www.crescentmoon.info/?p=745

2014-11-13 20:58:44

阅读数:1253

评论数:0

变分推断学习笔记

ref:http://www.crescentmoon.info/?p=709#more-709 问题描述 变分推断是一类用于贝叶斯估计和机器学习领域中近似计算复杂(intractable)积分的技术,它广泛应用于各种复杂模型的推断。本文是学习PRML第10章的一篇笔记,错误或...

2014-11-13 20:57:45

阅读数:1012

评论数:0

文本向量表示及TFIDF词汇权值

文本相似计算是进行文本聚类的基础,和传统结构化数值数据的聚类方法类似,文本聚类是通过计算文本之间"距离"来表示文本之间的相似度并产生聚类。文本相似度的常用计算方法有余弦定理和Jaccard系数。但是文本数据与普通的数值数据或类属数据不同,文本数据是一种半结构化数据,在进行文本挖...

2014-10-04 10:55:54

阅读数:764

评论数:0

crf

条件随机场模型是由Lafferty在2001年提出的一种典型的判别式模型。它在观测序列的基础上对目标序列进行建模,重点解决序列化标注的问题条件随机场模型既具有判别式模型的优点,又具有产生式模型考虑到上下文标记间的转移概率,以序列化形式进行全局参数优化和解码的特点,解决了其他判别式模型(如最大熵马尔...

2014-09-25 20:17:28

阅读数:526

评论数:0

条件随机场(CRF)

关联数据有两个特点:第一,我们准备建立模型的实体之间存在统计依赖性,第二,每个实体自身具有丰富的有利于分类的特征例如,当Web文档进行分类时候,网页上的文本类标签提供了很多信息,但超链接定义的页面之间的关系,可以进一步提高分类的准确度,图模型很自然的建立了实体之间的结构化关系。通常来讲,图模型已被...

2014-09-25 15:04:32

阅读数:560

评论数:0

数据归一化和两种常用的归一化方法

转载自:http://www.cnblogs.com/chaosimple/p/3227271.html

2014-09-25 12:49:30

阅读数:1201

评论数:0

数据归一化和两种常用的归一化方法

数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。以下是两种常用的归...

2014-09-25 12:47:44

阅读数:374

评论数:0

特征选择方法之信息增益

前文提到过,除了开方检验(CHI)以外,信息增益(IG,Information Gain)也是很有效的特征选择方法。但凡是特征选择,总是在将特征的重要程度量化之后再进行选择,而如何量化特征的重要性,就成了各种方法间最大的不同。开方检验中使用特征与类别间的关联性来进行这个量化,关联性越强,特征得分越...

2014-09-24 21:12:11

阅读数:391

评论数:0

隐马尔可夫模型 最大熵马尔可夫模型 条件随机场 区别和联系

隐马尔可夫模型(Hidden Markov Model,HMM),最大熵马尔可夫模型(Maximum Entropy Markov Model,MEMM)以及条件随机场(Conditional Random Field,CRF)是序列标注中最常用也是最基本的三个模型。HMM首先出现,MEMM其次,...

2014-09-24 13:18:42

阅读数:2745

评论数:0

LDA话题模型

(一)LDA作用         传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的。         举个例子,有两个句子分别如下:      ...

2014-09-11 11:11:30

阅读数:466

评论数:0

吸收马尔科夫链

一、 吸收态马尔可夫链 马尔可夫链是一种比较常用、 比较熟悉的随机过程, 它描述的是这样的情形 一个系统具有有限个状态, 系统在下一时刻的状态取决于 系统现在所处的状态 , 而与以前的状态无关 , 即系统 具有无后效性 系统由一种状态转移至 另一种 状 态的过程称为马尔可夫过程 马尔可夫...

2014-09-11 10:52:57

阅读数:2621

评论数:0

条件随机场(CRF)

关联数据有两个特点:第一,我们准备建立模型的实体之间存在统计依赖性,第二,每个实体自身具有丰富的有利于分类的特征例如,当Web文档进行分类时候,网页上的文本类标签提供了很多信息,但超链接定义的页面之间的关系,可以进一步提高分类的准确度,图模型很自然的建立了实体之间的结构化关系。通常来讲,图模型已被...

2014-09-11 10:15:16

阅读数:497

评论数:0

EM算法

EM算法 本文试图用最简单的例子、最浅显的方式说明EM(Expectation Maximization)算法的应用场景和使用方法,而略去公式的推导和收敛性的证明。 以下内容翻译自《Data-Intensive Text Processing with MapReduce》。 Max...

2014-09-10 22:39:27

阅读数:313

评论数:0

HMM的向前-向后算法(forward-backward algorithm)

学习问题 在HMM模型中,已知隐藏状态的集合S,观察值的集合O,以及一个观察序列(o1,o2,...,on),求使得该观察序列出现的可能性最大的模型参数(包括初始状态概率矩阵π,状态转移矩阵A,发射矩阵B)。这正好就是EM算法要求解的问题:已知一系列的观察值X,在隐含变量Y未知的情况下求最佳参数...

2014-09-10 22:34:47

阅读数:1747

评论数:0

HMM(隐马尔科夫模型)

分类 隐马尔科夫模型    HMM(隐马尔科夫模型)是自然语言处理中的一个基本模型,用途比较广泛,如汉语分词、词性标注及语音识别等,在NLP中占有很重要的地位。网上关于HMM的介绍讲解文档很多,我自己当时开始看的时候也有点稀里糊涂。后来看到wiki上举得一个关于HMM的例子才如醍醐灌顶,忽然...

2014-09-10 22:28:45

阅读数:1255

评论数:0

HMM学习笔记_3(从一个实例中学习Viterbi算法)

在上一篇中,我们已经从一个例子中学会了HMM的前向算法,解决了HMM算法的第一个问题,即模型评估问题。这一讲中我们来解决第二个问题:HMM的解码问题,即即给定观测序列 O=O1O2O3…Ot和模型参数λ=(A,B,π),怎样寻找满足这种观察序列意义上最优的隐含状态序列S,这一步中最常用的算法就是V...

2014-09-10 21:39:45

阅读数:427

评论数:0

HMM学习笔记_2(从一个实例中学习HMM前向算法)

HMM算法想必大家已经听说了好多次了,完全看公式一头雾水。但是HMM的基本理论其实很简单。因为HMM是马尔科夫链中的一种,只是它的状态不能直接被观察到,但是可以通过观察向量间接的反映出来,即每一个观察向量由一个具有相应概率密度分布的状态序列产生,又由于每一个状态也是随机分布的,所以HMM是一个双重...

2014-09-10 21:39:00

阅读数:284

评论数:0

HMM学习笔记_1(从一个实例中学习DTW算法)出处:http://www.cnblogs.com/tornadomeet

DTW为(Dynamic Time Warping,动态时间归准)的简称。应用很广,主要是在模板匹配中,比如说用在孤立词语音识别,计算机视觉中的行为识别,信息检索等中。可能大家学过这些类似的课程都看到过这个算法,公式也有几个,但是很抽象,当时看懂了但不久就会忘记,因为没有具体的实例来加深印象。 ...

2014-09-10 21:37:40

阅读数:409

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭