自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 截图公式转latex,基于python的方法

公式截图转latex

2022-08-31 19:45:57 814 2

原创 Ubuntu22.04、源码编译GNUradio3.10、HackRF、gr-osmosdr 环境配置

软件无线电HackRF环境配置

2022-07-17 15:51:35 2940 9

原创 将Matlab换成Pycharm风格

第一步,换颜色Github上有大佬做的脚本,用matlab运行即可。换颜色完成后可以在预设->编辑器->显示中取消“高亮当前行”第二步,换字体换pycharm默认字体 Menlo将字体下载好后,把里面menlo的ttf文件复制到MATLAB安装路径下的字体文件夹里,如:D:\MATLAB-R2017a\sys\java\jre\win64\jre\lib\fonts完成后打开MATLAB,在预设->字体中就可以选择Menlo啦效果:github上不去的话也可以在这个网

2021-11-01 13:29:20 702 1

原创 Cmake3.20、VS2019编译OpenCV4.3.0+CUDA11.1,显卡Geforce 940MX

1、下载Cmake、VS2019、OpenCV、CUDA2、打开Cmake,选择opencv源码路径,与编译目标路径,选择好之后点击configure3、点击finish3、完成后点击generate4、找到OPENCV_EXTRA_MODULES_PATH,选择扩展包的路径,勾选OPENCV_ENABLE_NOFREE,然后在查找中输入cuda,勾选WITH_CUDA,BUILD_CUDA_STUBS,点击configure5、勾选CUDA_FAST_MATH,然后将CUDA_ARCH_

2021-05-06 19:40:45 1472 3

原创 Matlab2019a实现两个USB摄像头的调用及视频的保存

1、安装适配器(1)如果没有安装适配器,那么在命令行输入 ‘imaqhwinfo’ ,将会报错,然后直接点击错误中的链接,去下载一个适配器,这个过程需要注册一个Matlab账号。(2)安装成功之后在命令行输入:obj = imaqhwinfo会得到一个结构体,是适配器的相关信息,比如我的就为:obj = 包含以下字段的 struct: InstalledAdaptors: {'winvideo'} MATLABVersion: '9.6 (R2019a)'

2021-01-01 22:56:09 3252 7

原创 Python机器学习实践(三)监督学习篇3(朴素贝叶斯分类器)

Python机器学习 学习笔记与实践环境:win10 + Anaconda Python3.8该篇总结各类监督学习算法的实践使用方法朴素贝叶斯分类器scikit-learn中实现了三种朴素贝叶斯分类器:GaussianNB、BernoulliNB 和 MultinomialNB。GaussianNB 可应用于任意连续数据;BernoulliNB 假定输入数据为二分类数据;MultinomialNB 假定输入数据为计数数据。1、BernoulliNB的理解BernoulliNB 分类器计

2020-12-19 17:23:25 2200 5

原创 Python机器学习实践(三)监督学习篇2(线性模型--分类)

Python机器学习 学习笔记与实践环境:win10 + Anaconda Python3.8该篇总结各类监督学习算法的实践使用方法1、二分类线性模型也广泛应用于分类问题。我们首先来看二分类。这时可以利用下面的公式进行预测:ŷ = w[0] * x[0] + w[1] * x[1] + …+ w[p] * x[p] + b > 0如果函数值小于 0,我们就预测类别 -1;如果函数值大于 0,我们就预测类别 +1。对于所有用于分类的线性模型,这个预测规则都是通用的。最常见的两种线性分类算

2020-12-18 22:13:08 1876 3

原创 Python机器学习实践(三)监督学习篇1(线性模型--回归)

Python机器学习 学习笔记与实践环境:win10 + Anaconda Python3.8该篇总结各类监督学习算法的实践使用方法注:mglearn库在这个版本的Anaconda中没有,需要自己安装一下。步骤:打开Anaconda Prompt -->输入“pip install mglearn”,然后回车–>完成后输入“conda list”查看是否安装成功。1、线性回归(普通最小二乘法)首先对于最简单的情况,即对每个样本只有一个特征的数据集使用该算法,从而直观地理解。完整代码如

2020-12-16 16:43:33 2443 3

原创 Python机器学习实践(二)K近邻分类(简单鸾尾花分类)

Python机器学习 学习笔记与实践环境:win10 + Anaconda3.8例子二 源自《Python机器学习基础教程》—Andreas C.Muller任务:鸾尾花的分类。鸾尾花有3个品种:setosa、versicolor、virginica。每种鸾尾花都有4个属性:花瓣的长度和宽度以及花萼的长度和宽度。现在要建立模型根据鸾尾花的4个属性来判断鸾尾花的种类,即分类问题。1、获取数据该数据集在scikit-learn的datasets模块中,我们用load_iris函数调用。#获取鸾尾花数

2020-12-15 15:00:41 1570 2

原创 Python机器学习实践(一)多项式拟合(简单房价预测)

Python机器学习 学习笔记与实践例子一 源自《Python与机器学习实战》—何宇健任务:现有47个房子的面积和价格,需要建立一个模型对房价进行预测。1、获取和处理数据房子的面积与价格对应的数据点击下面获得:点击此处获取导入库,并读取文本文件的数据:import numpy as npimport matplotlib.pyplot as plt#读取房子面积和对应的价格数据x,y=[],[]for sample in open("此处为数据文本文件路径","r"): #文本

2020-12-14 16:45:33 5972 8

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除