1029 Median (25分)

题目大意:将两个数列合并成一个数列后,若数列长度为奇数,则求其中位数,若数列长度为偶数,求中间两数中的前者。

思路:以为是个王者,没想到是个青铜。合成后的数列长度最大为4e5,因此直接sort就行。最终结果为(len-1)/2,此处len为合成后的数列长度,下标从0开始储存。
如果数列长度能够达到1e7的话,根据题意,两个数列均为升序,那么应该借助归并排序的思想来实现

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int N=4e5+5;

int a[N];

int main()
{
    int n1,n2;
    scanf("%d",&n1);
    for(int i=0;i<n1;i++)
        scanf("%d",&a[i]);
    scanf("%d",&n2);
    for(int i=0;i<n2;i++)
        scanf("%d",&a[i+n1]);

    sort(a,a+n1+n2);

    printf("%d\n",a[(n1+n2-1)/2]);

    return 0;
}

Sen-Median趋势析方法是一种用于描述和析时间序列数据的统计工具。它通过将数据按照位置进行排序,确定数据的中间位置,将中间位置的数据作为时间序列的趋势模型。 Sen-Median趋势析方法主要为以下几个步骤:首先,将时间序列数据按照时间顺序进行排序。然后,计算出各个时间点数据的斜率值,即通过计算两个数据值的差值来衡量数据的变化趋势。接下来,找到数据斜率值的中位数,作为代表数据整体趋势的中间趋势。最后,根据中间趋势值来绘制趋势线,以展示数据的整体趋势。 Sen-Median趋势析方法具有以下几个特点:首先,它能够减轻极端值对趋势析结果的影响,使得趋势模型更加平滑和稳定。其次,这种方法不依赖于布假设,可以适用于不同类型的数据。第三,该方法计算简单,不需要对数据进行复杂的数学计算,比较易于理解和使用。 Sen-Median趋势析方法在实际应用中具有广泛的应用。例如,在金融领域,可以使用该方法来析股票价格的趋势,帮助投资者做出决策。在气象学中,可以利用该方法来研究气温变化的趋势,以预测天气情况。此外,在经济学、环境科学等领域,Sen-Median趋势析方法也有着广泛的应用。 总之,Sen-Median趋势析方法是一种用于揭示时间序列数据趋势的统计析工具,它的特点是稳定、简单易懂,广泛应用于各个领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值