一、矩阵的定义
由 m × n m \times n m×n个数 a i j , i = 1 , 2.... , m , j = 1 , 2... , n a_{ij},i=1,2....,m,j=1,2...,n aij,i=1,2....,m,j=1,2...,n排成的m行n列的数表,称m行n列矩阵, m × m\times m×n阶矩阵。
二、向量与矩阵关系
- 在数组的角度看,向量是一维数组,是标量的数组;矩阵是二维数组,是向量的数组。
- 给定一个矩阵,可以看作由行向量构成,也可以看作由列向量组成。
- 向量是一种特殊的矩阵,n × \times × 1 阶矩阵可以称为一个n维列向量;1 × \times ×n阶矩阵也称为一个n维行向量。
三、矩阵与数据
在机器学习中,样本集合(数据集)常用矩阵表示,每行数据称为一个样本(数据对象),每列表达样本的一个特征(属性)。
四、矩阵表示线性方程组
描述参数、变量和常量之间的线性关系的线性系统常用线性方程组表示,未知量均为一次项的方程组称为线性方程组。
例如:某个线性系统用如下的线性方程组表示:
{
a
11
x
1
+
a
12
x
2
+
.
.
.
+
a
1
n
x
n
=
b
1
a
21
x
1
+
a
22
x
2
+
.
.
.
+
a
2
n
x
n
=
b
2
.
.
a
m
1
x
1
+
a
m
2
x
2
+
.
.
.
+
a
m
n
x
n
=
b
m
{\left \{ \begin{array}{ccc} a_{11} x_{1} + a_{12} x_{2} + ...+ a_{1n}x_n = b_1 \\ a_{21} x_{1} + a_{22} x_{2} + ...+ a_{2n}x_n = b_2 \\ .\\ .\\ a_{m1} x_{1} + a_{m2} x_{2} + ...+ a_{mn}x_n = b_m \end{array} \right. }
⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2..am1x1+am2x2+...+amnxn=bm
- 方程组的左侧的系数:用一个m × \times ×n阶矩阵A表示,每行表示一个方程,每列代表在不同方程中不同未知数的系数。
- 未知数 x x x:用 n × 1 n\times1 n×1阶矩阵X表示。
- 方程右侧的值:用 m × 1 m\times1 m×1阶矩阵B表示。
A为系数矩阵,X为未知数矩阵,B为常数矩阵。分三步得出此线性方程组
AX=B
\textbf{AX=B}
AX=B。其中:
A
=
[
a
11
a
12
.
.
.
a
1
n
a
21
a
22
.
.
.
a
2
n
.
.
.
.
.
.
.
.
.
.
.
.
a
m
1
a
m
2
.
.
.
a
m
n
]
,
X
=
[
x
1
x
2
.
.
.
x
n
]
,
B
=
[
b
1
b
2
.
.
.
b
n
]
\textbf{A}= {\begin{gathered} \begin{bmatrix} a_{11}&a_{12}&...&a_{1n}\\ a_{21}&a_{22}&...&a_{2n}\\ ... &... &... &... \\ a_{m1}&a_{m2}&...&a_{mn} \end{bmatrix} \end{gathered}} , \textbf{X}= {\begin{gathered} \begin{bmatrix} x_1\\ x_2\\ ... \\ x_n \end{bmatrix} \end{gathered}} , \textbf{B}= {\begin{gathered} \begin{bmatrix} b_1\\ b_2\\ ... \\ b_n \end{bmatrix} \end{gathered}}
A=⎣⎢⎢⎡a11a21...am1a12a22...am2............a1na2n...amn⎦⎥⎥⎤,X=⎣⎢⎢⎡x1x2...xn⎦⎥⎥⎤,B=⎣⎢⎢⎡b1b2...bn⎦⎥⎥⎤
把 A 和 B 组合为增广矩阵:
[
a
11
a
12
.
.
.
a
1
n
b
1
a
21
a
22
.
.
.
a
2
n
b
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
a
m
1
a
m
2
.
.
.
a
m
n
b
m
]
{\begin{gathered} \begin{bmatrix} a_{11}&a_{12}&...&a_{1n} &b_1\\ a_{21}&a_{22}&...&a_{2n} &b_2\\ ... &... &... &... &....\\ a_{m1}&a_{m2}&...&a_{mn}&b_m \end{bmatrix} \end{gathered}}
⎣⎢⎢⎡a11a21...am1a12a22...am2............a1na2n...amnb1b2....bm⎦⎥⎥⎤
五、矩阵在数字图像中的表示
矩阵的行对于图像的高(单位为像素),矩阵的列对应像素的宽(单位像素),矩阵元素对应图像的像素。采用矩阵存储数字图像,符合二维矩阵的行列特性,也便于通过矩阵理论和矩阵算法对数字图像进行分析和处理。