总览
横向联邦学习中的数据标签质量差异问题
请专家在服务器端做一个质量比较高的数据集。
Y. Chen, X. Yang, X. Qin, H. Yu, B. Chen & z. Shen, "FOCUS: Dealing with Label Quality Disparity in Federated Learning,'CoRR, arXiv:2001.11359, 2020.
纵向联邦学习中的参与方和特征重要性评估问题
Siwei Feng & Han Yu, “Multi-Participant Multi-Class Vertical Federated Learning,” CoRR, arXiv:2001.11154, 2020.
如何通过奖惩措施应对及遏制联邦学习恶意参与方的问题
- Can we find a dynamic and cost-effective best response function for the defender that maximizes the attacker’s probability of selection“Do not Attack"?
- Defenders:
– Faces many types of threats
– Has a limited budget for screening submitted model parameters (different screening methods incur different costs)
–Can announce punitive measures before-hand
Following the Stackelberg Game formulation, since the leader (attacker) will make the first move, she knows that a rational follower (the data federation) will react by maximizing the follower’s payoff. The attacker takes this into account before making the first move.
L. Lyu, H. Yu & Q. Yang, “Threats to Federated Learning: A Survey,” CoRR, arXiv:2003.02133, 2020.
如何去除参与顺序对贡献度的影响的问题
A. Ghorbani & J. Zou, " Data Shapley: Equitable Valuation of Data for Machine Learning," CoRR, arXiv:1904.02868, 2019.
- More powerful than the popular leave one-out or leverage score in providing insight on what data is
more valuable for a given learning task - Low Shapley value data effectively capture outliers and corruptions
- High Shapley value data inform what type of new data to acquire to improve the predictor.
挑战
Data Shapley值计算复杂度非常高,不适合由联邦学习参与方直接计算。
Y. Liu, S. Sun, Z. Ai, S. Zhang, z. Liu & H. Yu, “FedCoin: A Peer-to-Peer Payment System for Federated Learning,” CoRR,arXiv:2002.11711, 2020.
如何设计公平、可解释的联邦学习利益分配方案的问题
Yu, H., Liu, Z., Liu, Y., Chen, T., Cong, M., Weng, X., Niyato, D. & Yang, Q. A sustainable incentive scheme for federatedlearning. IEEE Intelligent Systems PP(99), IEEE (2020).
H. Yu, z. Liu, Y. Liu, T. Chen, M. Cong, X. Weng, D. Niyato & Q. Yang, “A Fairness-aware Incentive Scheme for Federated Learning,” in Proceedings of the 3rd AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (AIES- 20), pp. 393-399, 2020.
如何研究参与方在不同激励机制下的反应的问题
- We propose a multi-player game to study how FL participants make action selection decisions under
different incentive schemes. - It allows human players to role-play under various conditions to guide FL incentive research.
视频简介: https://youtu. be/4qd48QfcsXI
K.L. Ng, z. Chen, z. Liu, H. Yu, Y. Liu & Q. Yang, “A Multi-player Game for Studying Federated Learning Incentive Schemes,” IJCAI, 2020 (under review).