TensorFlow vs. Pytorch

本文对比了TensorFlow和PyTorch这两个深度学习框架。TensorFlow由Google开发,采用静态图,需要预定义计算图并依赖session运行;PyTorch由Facebook开发,提供动态图,代码更易读,适合初学者和研究者。虽然TensorFlow在业界应用更广泛,PyTorch的灵活性和易用性使其在学术界受到欢迎。
摘要由CSDN通过智能技术生成

TensorFlow和pytorch是目前两个比较受欢迎的深度学习框架,二者都被广泛地应用在业界和学术领域。本文对二者进行简单的梳理对比。
TensorFlow 由Google开发,于2015年发布。是静态框架,它需要创建图计算,并且创建之后不可更改,通过session会话进行数据输入和计算。
pytorch 由Facebook开发,于2017年发布。是动态框架,和python的逻辑是一样的,要对变量做任何操作都是灵活的。整个流程:计算图、传入变量数据、求梯度、参数更新等操作,对于编程者都有很强的可读性,代码相对于TensorFlow可读性更强。
以下是用TensorFlow实现CNN的代码:

import tensorflow as tf
'''
假设输入是32*32的大小,五分类任务
'''
# ===定义输入输出===
my_input = tf.placeholder(tf.float32, [None, 32*32])  
my_output = tf.placeholder(tf.int32, [None, 5]) 
# ===定义网络结构===
conv1 = tf.layers.conv2d(inputs=my_input, filter=16, kernel_size=[3,3],strides=1, padding='same', activation=tf.nn.relu)
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2,2], strides=2)
conv2 = tf.layers
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值