题目描述 Description
将整数n分成k份,且每份不能为空,任意两种划分方案不能相同(不考虑顺序)。
例如:n=7,k=3,下面三种划分方案被认为是相同的。
1 1 5
1 5 1
5 1 1
问有多少种不同的分法。
输入描述 Input Description
输入:n,k (6<n<=200,2<=k<=6)
输出描述 Output Description
输出:一个整数,即不同的分法。
样例输入 Sample Input
7 3
样例输出 Sample Output
4
数据范围及提示 Data Size & Hint
{四种分法为:1,1,5;1,2,4;1,3,3;2,2,3;}
这种题一看还是用dp做,就是状态转移方程不是很容易想到,下面给出状态转移方程:dp[i][j] = dp[i-1][j-1]+dp[i-j][j];
如果不懂的,建议去看一下这篇博客:点击打开链接
下面是代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int main()
{
int n, f,dp[205][10];
scanf("%d%d", &n, &f);
dp[0][0] = 1;
for(int j = 1; j <= f; j++)
{
for(int i = 1; i <= n; i++)
{
if(i>=j) dp[i][j] = dp[i-1][j-1]+dp[i-j][j];
}
}
printf("%d\n", dp[n][f]);
}