matplotlib部分:
1.windows下设置字体:my_font=font_manager.FontProperties(fname=‘C:\Windows\Fonts\simsun.ttc’)
2.plt.xlabel()设置x轴意义 plt.ylabel()设置y轴意义
3.plt.xticks()设置x轴坐标 plt.yticks()设置y轴坐标Course exercises:
4.折线图:plt.plot()
5.散点图:plt.scatter()
6.绘制网格:plt.grid()
7.绘制条形图:plt.bar() plt.barh()
8.绘制直方图:plt.hist()
总结:
7.常用统计图形介绍
Course exercises:
import matplotlib
age=range(11,31)
a=[1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]
#设置字体
my_font=font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')
plt.plot(age,a)
#设置x轴
x_tick=['{}岁'.format(i) for i in range(11,31)]
plt.xticks(age,x_tick,fontproperties=my_font)
plt.xlabel('年纪',fontproperties=my_font)
plt.ylabel('个数',fontproperties=my_font)
plt.title("11到30岁交友图",fontproperties=my_font)
plt.show()
numpy部分
1介绍.一个在python中做科学计算的基础库,重在数值计算,也是大部分python科学计算库的基础库,多用于大型、多维数组上执行数值运算。
2.numpy数据类型:
整数:t1=np.arange(0,10,2) / t2=np.array(range(1,10,2))
浮点数:(通过指定dype类型实现数组的数据类型及转换)t2=np.array(range(1,10,2),dtype=float)
t7=np.array([random.random() for i in range(10)])
print(“t7=”,t7)
t8=np.round(t7,2) // 保留两位小数点
print(‘t8=’,t8)
3.t8.shape() 输出(z,x,y)z表示块数, x表示行数,y表示列数
4.t1.flatten()与t1.reshape(x,)效果一样,将多维数组进行一维展开
5.在numpy中,当数组维数相同时,则对应位置进行计算,当数组维数不相同时:二维数组时,列数维度或者行数维度一样则可以进行计算;三维时,某一方向相同则可以进行计算。
6.数组轴的问题:
7.转置的三个方法
t1.transpose()
t1.T
t1.swapaxes(1,0)
8.numpy 的索引和切片
取多行多列:t2[2:5;1:4]
取多个不相邻的点:t2[[0,2,2],[0,4,5]]表示取 [0,0],[2,4],[2,5]这三个点
9.numpy的替换操作:t2=np.where(t1<10,2,10)将t1中小于10的替换为2,大于10的替换为10
10.numpy的裁剪操作:t1.clip(10,18)将大于(大于等于10)的裁剪为10,小于(小于等于)的裁剪为18
11.nan和inf:
13.数组拼接:
深度学习部分:
1.多参数梯度下降法步骤:对每个参数进行求偏导,通过n学习率调整w和b直到loss的值最小。(这种情况下容易陷入局部最小而不是全局最小的情况,线性回归的情况除外),详细步骤如下图所示