python及深度学习笔记三

matplotlib部分
1.windows下设置字体:my_font=font_manager.FontProperties(fname=‘C:\Windows\Fonts\simsun.ttc’)
2.plt.xlabel()设置x轴意义 plt.ylabel()设置y轴意义
3.plt.xticks()设置x轴坐标 plt.yticks()设置y轴坐标Course exercises:
4.折线图:plt.plot()
5.散点图:plt.scatter()
6.绘制网格:plt.grid()
7.绘制条形图:plt.bar() plt.barh()
8.绘制直方图:plt.hist()
总结:
在这里插入图片描述
7.常用统计图形介绍
在这里插入图片描述
Course exercises:

import matplotlib
age=range(11,31)
a=[1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]

#设置字体
my_font=font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')
plt.plot(age,a)

#设置x轴
x_tick=['{}岁'.format(i) for i in range(11,31)]
plt.xticks(age,x_tick,fontproperties=my_font)

plt.xlabel('年纪',fontproperties=my_font)
plt.ylabel('个数',fontproperties=my_font)
plt.title("11到30岁交友图",fontproperties=my_font)

plt.show()

在这里插入图片描述

numpy部分
1介绍.一个在python中做科学计算的基础库,重在数值计算,也是大部分python科学计算库的基础库,多用于大型、多维数组上执行数值运算。
2.numpy数据类型:
整数:t1=np.arange(0,10,2) / t2=np.array(range(1,10,2))
浮点数:(通过指定dype类型实现数组的数据类型及转换)t2=np.array(range(1,10,2),dtype=float)
t7=np.array([random.random() for i in range(10)])
print(“t7=”,t7)
t8=np.round(t7,2) // 保留两位小数点
print(‘t8=’,t8)
3.t8.shape() 输出(z,x,y)z表示块数, x表示行数,y表示列数
4.t1.flatten()与t1.reshape(x,)效果一样,将多维数组进行一维展开
5.在numpy中,当数组维数相同时,则对应位置进行计算,当数组维数不相同时:二维数组时,列数维度或者行数维度一样则可以进行计算;三维时,某一方向相同则可以进行计算。
6.数组轴的问题:
在这里插入图片描述
在这里插入图片描述
7.转置的三个方法
t1.transpose()
t1.T
t1.swapaxes(1,0)
8.numpy 的索引和切片
取多行多列:t2[2:5;1:4]
取多个不相邻的点:t2[[0,2,2],[0,4,5]]表示取 [0,0],[2,4],[2,5]这三个点
9.numpy的替换操作:t2=np.where(t1<10,2,10)将t1中小于10的替换为2,大于10的替换为10
10.numpy的裁剪操作:t1.clip(10,18)将大于(大于等于10)的裁剪为10,小于(小于等于)的裁剪为18
11.nan和inf:
在这里插入图片描述
13.数组拼接:
在这里插入图片描述

深度学习部分
1.多参数梯度下降法步骤:对每个参数进行求偏导,通过n学习率调整w和b直到loss的值最小。(这种情况下容易陷入局部最小而不是全局最小的情况,线性回归的情况除外),详细步骤如下图所示
在这里插入图片描述

【为什么要学习这门课程】深度学习框架如TensorFlow和Pytorch掩盖了深度学习底层实现方法,那能否能用Python代码从零实现来学习深度学习原理呢?本课程就为大家提供了这个可能,有助于深刻理解深度学习原理。左手原理、右手代码,双管齐下!本课程详细讲解深度学习原理并进行Python代码实现深度学习网络。课程内容涵盖感知机、多层感知机、卷积神经网络、循环神经网络,并使用Python 3及Numpy、Matplotlib从零实现上述神经网络。本课程还讲述了神经网络的训练方法与实践技巧,且开展了代码实践演示。课程对于核心内容讲解深入细致,如基于计算图理解反向传播算法,并用数学公式推导反向传播算法;另外还讲述了卷积加速方法im2col。【课程收获】本课程力求使学员通过深度学习原理、算法公式及Python代码的对照学习,摆脱框架而掌握深度学习底层实现原理与方法。本课程将给学员分享深度学习Python实现代码。课程代码通过Jupyter Notebook演示,可在Windows、ubuntu等系统上运行,且不需GPU支持。【优惠说明】 课程正在优惠!  备注:购课后可加入白勇老师课程学习交流QQ群:957519975【相关课程】学习本课程的前提是会使用Python语言以及Numpy和Matplotlib库。相关课程链接如下:《Python编程的术与道:Python语言入门》https://edu.csdn.net/course/detail/27845《玩转Numpy计算库》https://edu.csdn.net/lecturer/board/28656《玩转Matplotlib数据绘图库》https://edu.csdn.net/lecturer/board/28720【课程内容导图及特色】
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值