Description
Statements
On the most perfect of all planets i1c5l various numeral systems are being used during programming contests. In the second division they use a superfactorial numeral system. In this system any positive integer is presented as a linear combination of numbers converse to factorials:
Here a1 is non-negative integer, and integers ak for k ≥ 2 satisfy 0 ≤ ak < k. The nonsignificant zeros in the tail of the superfactorial number designation are rejected. The task is to find out how the rational number is presented in the superfactorial numeral system.
Input
Single line contains two space-separated integers p and q (1 ≤ p ≤ 106, 1 ≤ q ≤ 106).
Output
Single line should contain a sequence of space-separated integers a1, a2, ..., an, forming a number designation in the superfactorial numeral system. If several solution exist, output any of them.
Sample Input
1 2
0 1
2 10
0 0 1 0 4
10 2
5
题意:给你p,q输出满足公式的ai,
思路:从a1开始,a2=p*2!/q,...;直到p为零结束。有个小疑问0<=ak<k这个条件好像没什么用?难道其中有什么...。
代码如下:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define INF 0x3f3f3f3f
int main()
{
LL p,q;
scanf("%lld%lld",&p,&q);
for(int i=2;;i++)
{
int ans=p/q;
if(ans>=i&&i!=2)
{
ans=i-1;
}
p=(p-ans*q)*i;
printf("%d",ans);
if(p==0)
{
printf("\n");break;
}
printf(" ");
}
}