题目大意
给出一个长度为N的序列a和一个整数K。
询问有多少对长度大于1的区间满足:
在去掉最大值后剩下的数之和能被K整除。
Data Constraint
N ≤ 300000 , K ≤ 1000000
题解
记当前分治区间[L,R]的最大值是am.显然,这个区间的答案就是区间[L,m-1]和区间[m+1,R]以及跨过m的答案之和。
设前缀和数组S[i],那么一个合法的区间[i,j]满足:
(sj−Si−1−am) % k=0
即
Sj=Si−1+am(%k)
所以只要维护左边的Si-1+am就可以了。
时间复杂度: O(NlogN). 最坏情况下: O(N^2).
还有更快的解法?
考虑枚举最大值,对于每一个最大值有一个固定的可行区间(可以预处理),暴力扫一半,再查询另一半。
查询可以用可持久化线段树,或者用vector存下来,再用upper_bound和lower_bound查询。
可以证明: O(NlogN)。
SRC
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std ;
#define N 300000 + 10
#define M 1000000 + 10
typedef long long ll ;
vector < int > G[M] ;
int a[N] , s[N] , L[N] , R[N] ;
int n , k ;
ll ans ;
int Query( int k , int l , int r ) {
return upper_bound( G[k].begin() , G[k].end() , r ) - lower_bound( G[k].begin() , G[k].end() , l ) ;
}
int main() {
scanf( "%d%d" , &n , &k ) ;
G[0].push_back(0) ;
for (int i = 1 ; i <= n ; i ++ ) {
scanf( "%d" , &a[i] ) ;
s[i] = (s[i-1] + a[i]) % k ;
G[s[i]].push_back(i) ;
}
for (int i = 1 ; i <= n ; i ++ ) {
L[i] = i - 1 ;
while ( L[i] && a[L[i]] < a[i] ) L[i] = L[L[i]] ;
}
for (int i = n ; i >= 1 ; i -- ) {
R[i] = i + 1 ;
while ( R[i] <= n && a[R[i]] <= a[i] ) R[i] = R[R[i]] ;
}
for (int i = 1 ; i <= n ; i ++ ) a[i] %= k ;
for (int i = 1 ; i <= n ; i ++ ) {
if ( i - L[i] < R[i] - i ) {
for (int j = L[i] + 1 ; j <= i ; j ++ )
ans += Query( (s[j-1] + a[i]) % k , i , R[i] - 1 ) ;
} else {
for (int j = i ; j < R[i] ; j ++ )
ans += Query( (s[j] - a[i] + k) % k , L[i] , i - 1 ) ;
}
}
printf( "%I64d\n" , ans - n ) ;
return 0 ;
}
以上.