Numpy、Pandas以及Dataframe之间的关系梳理

经济基础决定上层建筑,这句话同样适用于编程,即使现在有了gpt的编程辅助,平时工作过程中如果对于一些基础库和基础函数使用不熟练,还是会影响工作效率。

一、Dataframe

        dataframe即数据表格,是Pandas库的一种数据格式,能充分发挥pandas库强大的索引功能。

        dataframe的一些常用函数、用法:

        (一)用于读数据

        ①第一种:pd.DataFrame(data): 从数据创建 DataFrame。【输入数据】

        ②第二种:pd.read_csv('file.csv'): 从 CSV 文件创建 DataFrame。【从csv读】

        ③第三种【用的最多】:pd.read_excel('file.xlsx'): 从 Excel 文件创建 DataFrame,代码中直接使用绝对路径最方便。【从excel读】

        (二)查看数据

        ①df.head(n): 显示前 n 行。/tail(n): 末尾 n 行。【看数据】

        ②df.shape: 返回 DataFrame 的行数和列数。【看形状】

        ③df.info(): 显示总行数、列名、每列非空数据。【看概要】

        (三)数据切片(筛选)

        ①df[['列1', '列2']]: 输入列名,选择多列数据。【整列切】

        ②df.loc[row_label, col_label]: 根据标签选择数据。【输入行名或列名访问】

        ③df.iloc[row_index, col_index]: 根据整数位置选择数据。【输入行索引或列索引访问】

        ④df[df['列名'] > 5]: 根据条件筛选数据。【筛选后再对数据做处理】

        (四)数据处理

        ①df.drop(columns=['列1'], inplace=True): 删除列。

        ②分组与聚合。

                聚合举例:(mean、max、min、sum、count-非空值数量、agg-同时用多个聚合函数)

                用法:

df.groupby('Category')['Value'].mean()

                用法2:

df.groupby('Category')['Value'].agg(['mean','sum','max'])

                 聚合举例:(groupby-按列的值进行分组、size-每个分组的行数、first-返回分组的第一个元素、last、get_group-获取指定分组的数据、apply-使用分组自定义函数)

                 用法:

group_A = grouped.get_group('A')

         ③填充缺失值:df.dropna(): 删除包含缺失值的行 / df.fillna(value): 填充缺失值。

         (五)数据合并与可视化

   ①数据合并

   pd.concat([df1, df2]): 沿轴合并数据帧。【合并两个df】

   pd.merge(df1, df2, on='列名'): 根据列名合并数据帧。 

   ②数据可视化

   df.plot(kind='图表类型'): 创建数据可视化图表。【画图】

二、Pandas数据库

Pandas库是建立在Numpy库的基础上,添加了索引和标签,具有Dataframe和Series两种更高级的数据结构。

Pandas库更加适用于数据的清洗、处理。

关于Series:dataframe中的每一列,都可以看作一个series,dataframe像是series的容器。每个Series在底层都是基于 Numpy 的数组。

三、Numpy数据库

作用:用于处理多维数组和矩阵。

两类数据结构:

①ndarray。存放不同维度的数组(一维、二维、三维),支持广播(broadcasting,允许在不同的数组之间操作)。

②dtype。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值