数二强化冲刺笔记(上):高等数学

24考研数二高数部分强化、冲刺阶段重要结论合集
数二强化冲刺笔记(下):线性代数



第1章 函数、极限、连续

1.1 函数基本性质

(1) 奇偶性

  • 导函数 f ′ ( x ) f'(x) f(x)
    • 奇 → 偶 , 偶 → 奇 奇\rightarrow 偶, 偶\rightarrow 奇 ,
  • 变上限积分函数 ∫ a x f ( t ) d t \int_{a}^{x} f(t) \text{d}t axf(t)dt (前提:积分收敛
    • f ( x ) 奇 ⇒ ∫ a x f ( t ) d t 偶 f(x)奇\Rightarrow \int_{a}^{x} f(t) \text{d}t偶 f(x)axf(t)dt
    • f ( x ) 偶 ⇒ ∫ 0 x f ( t ) d t 奇 ( a 只能为 0 ) f(x)偶 \Rightarrow \int_{0}^{x} f(t) \text{d}t奇 (a只能为0) f(x)0xf(t)dt(a只能为0)(奇函数 F ( 0 ) = 0 F(0)=0 F(0)=0
  • 推广——对称性
    • f ( x + a ) = f ( x − a ) ⇔ f ( x ) f(x+a)=f(x-a) \Leftrightarrow f(x) f(x+a)=f(xa)f(x) 的图像关于直线 x = a x=a x=a 对称
    • f ( x + a ) = − f ( x − a ) ⇔ f ( x ) f(x+a)=-f(x-a) \Leftrightarrow f(x) f(x+a)=f(xa)f(x) 的图像关于 ( a , f ( a ) ) (a,f(a)) (a,f(a)) 中心对称

(2) 周期性

  • f ( x ) 周期为 T ⇒ f ( a x + b ) 周期为 T ∣ a ∣ f(x)周期为T \Rightarrow f(ax+b)周期为\frac {T} {|a|} f(x)周期为Tf(ax+b)周期为aT
  • 导函数 f ′ ( x ) f'(x) f(x)
    • f ( x ) 可导 .   f ( x ) 周期为 T ⇒ f ′ ( x ) 周期为 T f(x)可导.\ f(x)周期为T \Rightarrow f'(x)周期为T f(x)可导. f(x)周期为Tf(x)周期为T(反之不成立)
  • 变上限积分函数 ∫ a x f ( t ) d t \int_{a}^{x} f(t) \text{d}t axf(t)dt
    • ∫ a x f ( t ) d t 周期为 T ⇔ ∫ a a + T f ( x ) d x = 0 \int_{a}^{x} f(t) \text{d}t 周期为T \Leftrightarrow \int_{a}^{a+T} f(x) \text{d}x=0 axf(t)dt周期为Taa+Tf(x)dx=0
    • 对于 x → ∞ x \rightarrow \infin x 的极限,在周期函数 f ( x ) f(x) f(x) 中可用周期 T T T 替换 x x x ,从而以去除极限符号
  • 典型周期函数:三角函数

(3) 有界性

典型有界函数: ∣ sin ⁡ x ∣ ≤ 1 , ∣ cos ⁡ x ∣ ≤ 1 , ∣ arcsin ⁡ x ∣ ≤ π 2 , ∣ arctan ⁡ x ∣ < π 2 , ∣ arccos ⁡ x ∣ ≤ π |\sin x| ≤1, |\cos x|≤1,|\arcsin x|≤\frac{ \pi } {2},|\arctan x|<\frac{ \pi } {2},|\arccos x| ≤ \pi sinx1,cosx1,arcsinx2π,arctanx<2π,arccosxπ

连续函数有界的判定:

  • 闭区连续: f ( x ) ∈ C [ a , b ] ⇒ f ( x ) 在 [ a , b ] 上有界 f(x) \in C[a,b]\Rightarrow f(x)在[a,b]上有界 f(x)C[a,b]f(x)[a,b]上有界
  • 开区连续且两端极限存在: f ( x ) ∈ C ( a , b ) , 且 f ( a + ) , f ( b − ) 存在 ⇒ f ( x ) 在 ( a , b ) 内有界 f(x) \in C(a,b),且f(a^+),f(b^-)存在\Rightarrow f(x)在(a,b)内有界 f(x)C(a,b),f(a+),f(b)存在f(x)(a,b)内有界(可为无穷区间)
  • 根据导函数 f ′ ( x ) f'(x) f(x)有限区间 I I I (无论开闭)上有界 ⇒ f ( x ) \Rightarrow f(x) f(x) I I I 上有界

(4) 三角函数性质

  • 三角函数常用公式
    1. 诱导公式:奇变偶不变,符号看象限(指视 x x x为锐角时 sin ⁡ ( k π 2 + x ) \sin(\frac{k\pi}2+x) sin(2+x)的符号)
    2. 和角公式: s c c s sccs sccs c c s s ccss ccss cos ⁡ \cos cos
  • 反正弦函数 arcsin ⁡ x \arcsin x arcsinx、反余弦函数 arccos ⁡ x \arccos x arccosx
    • 定义域: [ − 1 ,   1   ] [-1,\ 1\ ] [1, 1 ]
    • 值域: arcsin ⁡ x ∈ [ − π 2 ,   π 2 ] ,   arccos ⁡ x ∈ [   0 ,   π   ] \arcsin x\in[-\frac\pi2,\ \frac\pi2],\ \arccos x\in[\ 0,\ \pi\ ] arcsinx[2π, 2π], arccosx[ 0, π ]
    • 常用公式: arcsin ⁡ x + arccos ⁡ x = π 2 \arcsin x + \arccos x = \frac\pi2 arcsinx+arccosx=2π
  • 反正切函数 arctan ⁡ x \arctan x arctanx、反余切函数 arccot  x \text{arccot}\ x arccot x
    • 定义域: ( − ∞ ,   + ∞ ) (-\infin,\ +\infin) (, +)
    • 值域: arctan ⁡ x ∈ ( − π 2 ,   π 2 ) ,  arccot  x ∈ (   0 ,   π   ) \arctan x\in(-\frac\pi2,\ \frac\pi2),\ \text{arccot}\ x\in(\ 0,\ \pi\ ) arctanx(2π, 2π), arccot x( 0, π )
    • 常用公式: arccot  x = arctan ⁡ 1 x \text{arccot}\ x=\arctan\frac1x arccot x=arctanx1 arctan ⁡ x + arctan ⁡ 1 x = π 2 \arctan x+\arctan\frac1x=\frac\pi2 arctanx+arctanx1=2π

(5) 其他

取整函数 [ x ] [x] [x] 的基本不等式: x − 1 < [ x ] ≤ x x-1<[x]≤x x1<[x]x

反函数: f ( x ) f(x) f(x) 与其反函数 f − 1 ( x ) f^{-1}(x) f1(x) 的图像关于直线 y = x y=x y=x 对称: f ( f − 1 ( x ) ) = f − 1 ( f ( x ) ) = x f(f^{-1}(x))=f^{-1}(f(x))=x f(f1(x))=f1(f(x))=x

1.2 极限基本性质

  1. 局部有界性:若 lim ⁡ x → x 0 f ( x ) \lim\limits_{x\rightarrow x_0\\} f(x) xx0limf(x) 存在,则 f ( x ) f(x) f(x) x 0 x_0 x0 某去心邻域内有界
  2. 保号性
    极限 ⇒ \Rightarrow 函数:前后皆为严格不等号(在去心邻域)
    函数 ⇒ \Rightarrow 极限:(无论函数是否严格不等号)固定推出不严格不等号

    极限 —— ≥≤,积分 —— ><

  3. 推论:保序性、绝对值,同上
  4. 极限值与无穷小的关系: lim ⁡ f ( x ) = A ⇔ f ( x ) = A + α ( x ) , 其中 lim ⁡ α ( x ) = 0 \lim f(x)=A \Leftrightarrow f(x)=A+\alpha (x), 其中\lim \alpha (x)=0 limf(x)=Af(x)=A+α(x),其中limα(x)=0

1.3 求极限方法

  • 麦克劳林公式
    • f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + . . . + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+...+\frac{f^{(n)}(0)}{n!}x^n+o(x^n) f(x)=f(0)+f(0)x+2!f′′(0)x2+...+n!f(n)(0)xn+o(xn)
    • e x = 1 + x + 1 2 ! x 2 + . . . + 1 n ! x n + o ( x n ) \text{e}^x=1+x+\frac1{2!}x^2+...+\frac1{n!}x^n+o(x^n) ex=1+x+2!1x2+...+n!1xn+o(xn)
    • ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − . . . + ( − 1 ) n − 1 n x n + o ( x n ) \ln(1+x)=x-\frac12x^2+\frac13x^3-...+\frac{(-1)^{n-1}}{n}x^n+o(x^n) ln(1+x)=x21x2+31x3...+n(1)n1xn+o(xn)
    • sin ⁡ x = x − 1 3 ! x 3 + . . . + ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 + o ( x 2 n + 1 ) \sin x=x-\frac1{3!}x^3+...+\frac{(-1)^n}{(2n+1)!}x^{2n+1}+o(x^{2n+1}) sinx=x3!1x3+...+(2n+1)!(1)nx2n+1+o(x2n+1)
    • cos ⁡ x = 1 − 1 2 ! x 2 + . . . + ( − 1 ) n ( 2 n ) ! x 2 n + o ( x 2 n ) \cos x=1-\frac1{2!}x^2+...+\frac{(-1)^n}{(2n)!}x^{2n}+o(x^{2n}) cosx=12!1x2+...+(2n)!(1)nx2n+o(x2n)
    • ( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + . . . + m ( m − 1 ) . . . ( m − n + 1 ) n ! x n + o ( x n ) (1+x)^m=1+mx+\frac{m(m-1)}{2!}x^2+...+\frac{m(m-1)...(m-n+1)}{n!}x^n+o(x^n) (1+x)m=1+mx+2!m(m1)x2+...+n!m(m1)...(mn+1)xn+o(xn)
  • 技巧与理解
    1. 对 lim ⁡ x → x 0 + f ( x ) = A 的理解 :  ① x → x 0 且 x ≠ x 0   ② f ( x ) → A 或 f ( x ) = A 对\lim\limits_{x\rightarrow x_0^+\\}f(x)=A的理解:\ ①x \rightarrow x_0且x≠x_0 \ \ ②f(x) \rightarrow A或f(x)=A xx0+limf(x)=A的理解: xx0x=x0  f(x)Af(x)=A
    2. lim ⁡ x → 0 + x x = 1 , lim ⁡ x → 0 + x α ln ⁡ β x = 0   ( α > 0 ,   β 任意 ) \lim\limits_{x\rightarrow 0^+\\}x^x=1, \lim\limits_{x\rightarrow 0^+\\}x^\alpha \ln^\beta x = 0\ (\alpha>0,\ \beta任意 ) x0+limxx=1,x0+limxαlnβx=0 (α>0, β任意)
    3. 常用不等式:
      • 2 a b ≤ a 2 + b 2 2ab≤a^2+b^2 2aba2+b2
      • sin ⁡ x < x < tan ⁡ x   , x ∈ ( 0 , π 2 ) \sin x < x < \tan x \ ,x \in (0,\frac{\pi}{2}) sinx<x<tanx ,x(0,2π)
      • x 1 + x < ln ⁡ ( 1 + x ) < x   , x ∈ [ 0 , + ∞ ) \frac {x} {1+x} < \ln (1+x) < x \ ,x \in [0,+∞) 1+xx<ln(1+x)<x ,x[0,+)
      • 1 + x ≤ e x 1+x≤e^x 1+xex
    4. 遇到连乘连除、多重乘方开方,善用对数求导法
    5. 复杂函数泰勒技巧:求导后(变简单)泰勒,再积回去(小 o o o直接升阶)
    6. 自证等价:等式两端同除,取极限得1
    7. 逆用牛莱公式——写回积分:由 β ( x ) − α ( x ) = ∫ α ( x ) β ( x ) d t \beta(x)-\alpha(x)=\int^{\beta(x)}_{\alpha(x)}\text{d}t β(x)α(x)=α(x)β(x)dt ,有 [ β ( x ) − α ( x ) ] f ( x ) = ∫ α ( x ) β ( x ) f ( x ) d t [\beta(x)-\alpha(x)]f(x)=\int^{\beta(x)}_{\alpha(x)}f(x)\text{d}t [β(x)α(x)]f(x)=α(x)β(x)f(x)dt f ( β ( x ) ) − f ( α ( x ) ) = ∫ α ( x ) β ( x ) f ′ ( x ) d x f(\beta(x))-f({\alpha(x)})=\int^{\beta(x)}_{\alpha(x)}f'(x)\text{d}x f(β(x))f(α(x))=α(x)β(x)f(x)dx,方便后续与相同区间的变限积分合并或其他操作

      求特定区间定积分、求解积分方程时亦可用此方法

1.4 无穷小阶的比较

  • 一般函数无穷小阶的比较
    1. 两两比较
    2. 估阶:分别与 x k x^k xk 比,求  k k k
    3. 求导定阶:原阶 = 导阶 + 1
    4. f ( x ) f(x) f(x) U ( 0 , δ ) U(0,\delta ) U(0,δ) 连续,当 x → 0 x\rightarrow 0 x0 时, f ( x ) , g ( x ) f(x),g(x) f(x),g(x) 分别为 m , n m,n m,n 阶,则 ∫ a g ( x ) f ( t ) d t \int_{a}^{g(x)}f(t) \text{d}t ag(x)f(t)dt n ( m + 1 ) n(m+1) n(m+1)
  • 递推数列无穷小阶的比较(23“新”题型,24数二未考)
    假设有数列 { x n } , { y n } \{x_n\},\{y_n\} {xn},{yn} 分别由各自的递推关系 x n + 1 = f ( x n ) , y n + 1 = g ( y n ) x_{n+1}=f(x_n),y_{n+1}=g(y_n) xn+1=f(xn),yn+1=g(yn) 定义,且均为 n → ∞ n\rightarrow\infin n 时的无穷小,则
    1. 递推数列无穷小判定条件:若 lim ⁡ n → ∞ x n + 1 x n = a \lim\limits_{n\rightarrow \infin} \frac{x_{n+1}}{x_n}=a nlimxnxn+1=a ,且 ∣ a ∣ ≤ 1 |a|≤1 a1 ,则 lim ⁡ n → ∞ x n = 0 \lim\limits_{n\rightarrow \infin}x_n=0 nlimxn=0

    初步判断阶: ∣ a ∣ |a| a 越小,则数列越收敛于0,即数列越高阶(若相等则看系数(“限制条件”),“限制越紧越收敛”;0)

    1. 两两比较——从第 n + 1 n+1 n+1 项由递推式写开: lim ⁡ n → ∞ y n + 1 x n + 1 = lim ⁡ n → ∞ g ( y n ) f ( x n ) = . . . \lim\limits_{n\rightarrow \infin}\frac{y_{n+1}}{x_{n+1}}=\lim\limits_{n\rightarrow \infin}\frac{g(y_n)}{f(x_n)}=... nlimxn+1yn+1=nlimf(xn)g(yn)=...(分子分母视情况而定),先通过等价无穷小等方法化简极限式,再由结论 lim ⁡ n → ∞ x n = lim ⁡ n → ∞ x n + 1 \lim\limits_{n\rightarrow \infin}x_n=\lim\limits_{n\rightarrow \infin}x_{n+1} nlimxn=nlimxn+1 及对应的函数无穷小比较结论逐一排除错误选项,最终判明大小关系。

1.5 递推定义的数列求极限

  • 两种方法:先证单调有界再求极限 OR 先求极限再证极限为该值
  • 单调有界判定常用不等式
    1. 2 a b ≤ a 2 + b 2 ,   a 1 a 2 . . . a n n ≤ a 1 + a 2 + . . . + a n n   ( a 1 , a 2 , . . . , a n ≥ 0 ) 2ab≤a^2+b^2,\ \sqrt[n]{a_1a_2...a_n}≤\frac{a_1+a_2+...+a_n}n\ (a_1,a_2,...,a_n≥0) 2aba2+b2, na1a2...an na1+a2+...+an (a1,a2,...,an0)
    2. sin ⁡ x < x < tan ⁡ x   ( 0 < x < π 2 ) \sin x<x<\tan x\ (0<x<\frac \pi2) sinx<x<tanx (0<x<2π)
    3. x 1 + x < ln ⁡ ( 1 + x ) < x   ( 0 < x < + ∞ ) \frac x{1+x}<\ln(1+x)<x\ (0<x<+\infin) 1+xx<ln(1+x)<x (0<x<+)
    4. e x − 1 > x   ( x > 0 ) \text{e}^x-1>x\ (x>0) ex1>x (x>0)
  • 有界性(最值)的判定:设 { a n } \{a_n\} {an}极限为 a a a,则 ∃   a i > a ⇔ \exist \ a_i>a \Leftrightarrow  ai>a 有最大值 , ∃   a i < a ⇔ \exist \ a_i<a \Leftrightarrow  ai<a 有最小值(对应函数几何性质
  • 单调性判定常用方法
    1. 直接相减 ( x n + 1 − x n ) (x_{n+1}-x_n) (xn+1xn)、相除 ( x n + 1 x n ) (\frac {x_{n+1}}{x_n}) (xnxn+1)比较
    2. 设数列 { x n } \{x_n\} {xn}可由 x 1 = a , x n + 1 = f ( x n ) , x n ∈ I x_1=a,x_{n+1}=f(x_n),x_n\in I x1=a,xn+1=f(xn),xnI 确定:
      • f ( x ) f(x) f(x) I I I 上单调,则 { x n } \{x_n\} {xn}直接由前两项 x 1 , x 2 x_1,x_2 x1,x2 决定单调: x 1 ≤ x 2 ⇒ { x n } x_1 ≤ x_2 \Rightarrow \{x_n\} x1x2{xn} 单调增, x 1 ≥ x 2 ⇒ { x n } x_1 ≥ x_2 \Rightarrow \{x_n\} x1x2{xn} 单调减
      • f ( x ) f(x) f(x) I I I 上单调减,则 { x n } \{x_n\} {xn}不单调(此时常先求极限再证明)

依旧未考

1.6 求各种复杂渐近线

  1. 极坐标曲线:改写成参数方程
  2. 参数方程曲线
    • 特殊法:尽可能反解 t = t ( x ) t=t(x) t=t(x) ,再代入 y y y 中直接得直角坐标解析式 y = f ( x ) y=f(x) y=f(x)
    • 通法:根据 x x x 的趋势写出 t t t 的趋势,然后正常套公式

第2章 一元函数微分学

2.1 导函数的特性

  1. f ( x ) f(x) f(x) 在区间 I I I 上可导,则其导函数 f ′ ( x ) f'(x) f(x) I I I 上不存在第一类间断点

    因此可能出现第二类间断点(无穷或震荡),即导函数的单点极限不一定存在(导函数不一定连续)

  2. (介值性)
    f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上可导,且 f + ′ ( a ) ≠ f − ′ ( b ) f_+'(a)≠f_-'(b) f+(a)=f(b) μ μ μ 为介于 f + ′ ( a ) f_+'(a) f+(a) f − ′ ( b ) f_-'(b) f(b) 之间的任何值,则至少存在一个 ξ ∈ ( a , b ) , f ′ ( ξ ) = μ \xi \in (a,b),f'(\xi)=μ ξ(a,b),f(ξ)=μ
    • 推论1 (零点定理)
      f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上可导,且 f + ′ ( a ) f − ′ ( b ) < 0 f_+'(a)f_-'(b)<0 f+(a)f(b)<0 ,则至少存在一个 ξ ∈ ( a , b ) , f ′ ( ξ ) = 0 \xi \in (a,b) ,f'(\xi)=0 ξ(a,b),f(ξ)=0
    • 推论2
      f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上可导,且 f ′ ( x ) ≠ 0 f'(x)≠0 f(x)=0,则在 [ a , b ] [a,b] [a,b]上要么恒有 f ′ ( x ) > 0 f'(x)>0 f(x)>0 ,要么恒有 f ′ ( x ) < 0 f'(x)<0 f(x)<0
  3. 只知道单点导数符号无法判定该点邻域内单调性,当导函数连续时则可判定

2.2 可导性的判定

  1. f ( 0 ) = 0 f(0)=0 f(0)=0,则“ lim ⁡ h → 0 f ( ϕ ( h ) ) ψ ( h ) \lim\limits_{h\rightarrow0} \frac {f(\phi (h))} {\psi (h)} h0limψ(h)f(ϕ(h)) 存在 ⇒ \Rightarrow f ( x ) f(x) f(x) 在点 x = 0 x=0 x=0 处可导”的充要条件为:
    • ϕ ( h ) → 0 \phi (h) \rightarrow 0 ϕ(h)0(即 ϕ ( h ) → 0 + \phi (h) \rightarrow 0^+ ϕ(h)0+ ϕ ( h ) → 0 − \phi (h) \rightarrow 0^- ϕ(h)0
    • ϕ ( h ) \phi (h) ϕ(h) ψ ( h ) \psi (h) ψ(h) 同阶,即 lim ⁡ h → 0 f ( ϕ ( h ) ) ψ ( h ) = lim ⁡ h → 0 f ( ϕ ( h ) ) ϕ ( h ) • ϕ ( h ) ψ ( h ) , ϕ ( h ) ψ ( h ) → A ≠ 0 \lim\limits_{h\rightarrow0} \frac {f(\phi (h))} {\psi (h)} = \lim\limits_{h\rightarrow0} \frac {f(\phi (h))} {\phi (h)}•\frac {\phi (h)}{\psi (h)},\frac {\phi (h)}{\psi (h)}\rightarrow A≠0 h0limψ(h)f(ϕ(h))=h0limϕ(h)f(ϕ(h))ψ(h)ϕ(h),ψ(h)ϕ(h)A=0
  2. 变限积分 ∫ a x f ( t ) d t \int_{a}^{x} f(t) \text{d}t axf(t)dt 的可导性:被积函数 f ( x ) f(x) f(x)连续,则一定可导
  3. 绝对值函数的可导性:
    • f ( x ) = ϕ ( x ) ∣ x − a ∣ f(x)=\phi (x)|x-a| f(x)=ϕ(x)xa,其中 ϕ ( x ) \phi(x) ϕ(x) x = a x=a x=a 处连续,则 f ( x ) f(x) f(x) x = a x=a x=a 处可导 ⇔ \Leftrightarrow ϕ ( a ) = 0 \phi(a)=0 ϕ(a)=0 (即图像在该点与 x x x 轴相切)
      • 推论: x n ∣ x ∣ x^n|x| xnx x = 0 x=0 x=0 n n n 阶可导,但 n + 1 n+1 n+1 阶不可导
    • f ( x ) f(x) f(x) 可导 ⇎ \not\Leftrightarrow ∣ f ( x ) ∣ |f(x)| f(x) 可导
    • 连续函数 f ( x ) f(x) f(x) x 0 x_0 x0 单点可导性的判定:
      • f ( x 0 ) ≠ 0 f(x_0)≠0 f(x0)=0,则 ∣ f ( x ) ∣ |f(x)| f(x) x 0 x_0 x0 处可导 ⇔ f ( x ) \Leftrightarrow f(x) f(x) x 0 x_0 x0 处可导
      • f ( x 0 ) = 0 f(x_0)=0 f(x0)=0,则 ∣ f ( x ) ∣ |f(x)| f(x) x 0 x_0 x0 处可导 ⇔ \Leftrightarrow f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0 (即在该点曲线平滑)
  4. 复合函数的可导性:
    • 内外都存在,复合必存在
    • 内层不存在,复合可能存在

2.3 求导、导数应用技巧

  • 分段函数分界点求导
    1. 导数定义
    2. 求导代入
    3. 导函数极限
    4. 两边函数式分别泰勒展开,比较系数可得左右各阶导数,若相等则说明分界点该阶导数存在
  • 复杂的变限积分函数求导:在积分中泰勒展开(展开至够所求导阶数即可),直接积出来,再直接与通用泰勒公式对比系数即可
  • 隐函数二阶导公式: d 2 y d x 2 = y ′ ′ ( t ) x ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) x ′ 3 ( t ) \frac{\text{d}^2y}{\text{d}x^2}=\frac{y''(t)x'(t)-x''(t)y'(t)}{x'^3(t)} dx2d2y=x′3(t)y′′(t)x(t)x′′(t)y(t)(类似导数除法公式,最后勿忘乘 x ′ ( t ) x'(t) x(t)的反函数/倒数)
  • 对于带绝对值变限积分,若要讨论极值拐点等性质,可换元将绝对值内换成简单形式,便于后续观察奇偶性等性质,同时也便于化简及进一步处理!
  • 抽象函数求导:活用链导法则导数四则运算法则,用多元偏导的方法求导

    【24数二-18题】 x = e t ⇒ t = ln ⁡ x x=\text{e}^t \Rightarrow t=\ln x x=ett=lnx y = y ( x ) y=y(x) y=y(x) 求导的详细过程:
    d y d x = d y d t • d t d x = 1 x • d y d t \frac{\text{d}y}{\text{d}x}=\frac{\text{d}y}{\text{d}t}•\frac{\text{d}t}{\text{d}x}=\frac1x•\frac{\text{d}y}{\text{d}t} dxdy=dtdydxdt=x1dtdy
    d 2 y d x 2 = d d x ( d y d x ) = d d x ( 1 x ) • d y d t + 1 x • d d t ( d y d t ) • d t d x = − 1 x 2 • d y d t + 1 x 2 • d 2 y d t 2 \frac{\text{d}^2y}{\text{d}x^2}=\frac{\text{d}}{\text{d}x}(\frac{\text{d}y}{\text{d}x})=\frac{\text{d}}{\text{d}x}(\frac1x)•\frac{\text{d}y}{\text{d}t}+\frac1x•\frac{\text{d}}{\text{d}t}(\frac{\text{d}y}{\text{d}t})•\frac{\text{d}t}{\text{d}x}=-\frac{1}{x^2}•\frac{\text{d}y}{\text{d}t}+\frac{1}{x^2}•\frac{\text{d}^2y}{\text{d}t^2} dx2d2y=dxd(dxdy)=dxd(x1)dtdy+x1dtd(dtdy)dxdt=x21dtdy+x21dt2d2y

2.4 导数的一般应用

2.4.1 极值的判定

  • 可能的极值点:驻点(必要条件 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0)、导数不存在的点
  • 充分条件
    • 第一充分条件 —— 单调性:左右邻域 f ′ ( x ) f'(x) f(x) 符号发生变化
    • 第二充分条件 —— 凹凸性:观察曲线凹向
    • 第三充分条件 —— 当 f ′ ( x 0 ) = . . . = f ( n − 1 ) ( x 0 ) = 0 , f ( n ) ( x 0 ) ≠ 0 f'(x_0)=...=f^{(n-1)}(x_0)=0,f^{(n)}(x_0)≠0 f(x0)=...=f(n1)(x0)=0,f(n)(x0)=0 时, n n n偶数则有极值,此时符号与极大极小的关系同凹凸性; n n n 为奇数则无极值

      思路:若 x 0 x_0 x0 处导数为0,则继续导,直至出现 ∃   n , f ( n ) ( x 0 ) ≠ 0 \exist\ n,f^{(n)}(x_0)≠0  n,f(n)(x0)=0 ,再参照极值必要、充分条件原路回溯,得出 f ( x ) f(x) f(x) x 0 x_0 x0 两侧的单调性,继而可判极值

凹凸性、更高阶导性质判定同理。

2.4.2 最值的判定

  • 将区间内的极值与区间端点值(开区间则求极限)比较可得

2.4.3 曲率公式

  • 定义式:
    K = lim ⁡ Δ x → 0 ∣ Δ α Δ s ∣ K=\lim_{\Delta x\rightarrow 0} |\frac{\Delta \alpha}{\Delta s}| K=Δx0limΔsΔα
  • 计算式
    • 曲线由直角坐标方程 y = y ( x ) y=y(x) y=y(x) 给出:
      K = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 K=\frac {|y''|}{(1+y'^2)^{\frac32}} K=(1+y′2)23y′′
    • 曲线由参数方程 { x = x ( t ) y = y ( t ) \left\{\begin{matrix} x=x(t)\\ y=y(t) \end{matrix}\right. {x=x(t)y=y(t) 给出:
      K = ∣ y ′ ′ x ′ − y ′ x ′ ′ ∣ ( x ′ 2 + y ′ 2 ) 3 2 K=\frac {|y''x'-y'x''|}{(x'^2+y'^2)^{\frac32}} K=(x′2+y′2)23y′′xyx′′
  • 曲率半径: R = 1 K R=\frac 1K R=K1

    【24数二-11题】首考曲率圆方程!注意曲率圆位于曲线“内部”,故通过某定点与曲率半径可得该点的曲率圆心,进而写出顶点式方程

2.4.4 求高阶导数

  1. 找规律(适用于简单函数 n n n 阶导或复杂函数极低阶单点导,嗯导就完事了.jpg)
  2. 莱布尼兹公式——设 u ,   v u,\ v u, v ,找非0项
  3. 泰勒:展开,再对比系数(积分内泰勒方法见第一章极限部分)
  4. 积分方程形式的隐函数高阶导:等式两边求导,解出 f ( x ) f(x) f(x) 正常形式再选用其他方法求解

2.5 微分中值定理证明题

2.5.1 方程根问题

  • 存在性
    1. 零点定理
    2. 罗尔定理:取原函数,代入特殊值
  • 个数
    1. 单调性
    2. 奇偶性:偶函数 ⇒ \Rightarrow 左右对称,结果为单侧个数×2
    3. 方程次数: n n n 次方程 ⇒ \Rightarrow 至多有 n n n 个实根
    4. 罗尔推论: f ( n ) ( x ) ≠ 0 ⇔ f^{(n)}(x)≠0 \Leftrightarrow f(n)(x)=0 原方程有 n n n个根

2.5.2 中值定理大题策略

求变量范围题的建模方法——参变分离

  • 单中值——构造辅助函数 F ( x ) F(x) F(x) ,只需证 F ′ ( x ) = 0 F'(x)=0 F(x)=0
    1. 分析法/还原法
    2. 微分方程法(通法)
      • 一阶齐次:解结论对应的微分方程,取通解中核心部分(即常见辅助函数之第3种)
      • 二阶常系齐次(仅供参考):构造两次辅助函数 F ( x ) , G ( x ) F(x),G(x) F(x),G(x)
        1. 解得特征根 r 1 , r 2 r_1,r_2 r1,r2 ,取其一构造 F ( x ) = e − r 1 x f ( x ) F(x)=\text{e}^{-r_1x}f(x) F(x)=er1xf(x)指数取负
        2. 由1可证 f ′ ( ξ ) − r 1 f ( ξ ) = 0 f'(ξ)-r_1f(ξ)=0 f(ξ)r1f(ξ)=0 ,为了利用该结论,构造 G ( x ) = e − r 2 x [ f ′ ( x ) − r 1 f ( x ) ] G(x)=\text{e}^{-r_2x}[f'(x)-r_1f(x)] G(x)=er2x[f(x)r1f(x)] ,最终可证得原结论
    3. 常见的辅助函数( f ( x ) , g ( x ) f(x),g(x) f(x),g(x)可为任意符合定理条件的函数 )
      1. f ′ ( ξ ) g ( ξ ) + g ′ ( ξ ) f ( ξ ) = 0 f'(ξ)g(ξ)+g'(ξ)f(ξ)=0 f(ξ)g(ξ)+g(ξ)f(ξ)=0 :令 F ( x ) = f ( x ) g ( x ) F(x)=f(x)g(x) F(x)=f(x)g(x)
      2. f ′ ( ξ ) g ( ξ ) − g ′ ( ξ ) f ( ξ ) = 0 f'(ξ)g(ξ)-g'(ξ)f(ξ)=0 f(ξ)g(ξ)g(ξ)f(ξ)=0 :令 F ( x ) = f ( x ) g ( x ) F(x)=\frac{f(x)}{g(x)} F(x)=g(x)f(x)
      3. f ′ ( ξ ) + g ( ξ ) f ( ξ ) = 0 f'(ξ)+g(ξ)f(ξ)=0 f(ξ)+g(ξ)f(ξ)=0 :令 F ( x ) = f ( x ) e ∫ 0 x g ( t ) d t F(x)=f(x)\text{e}^{\int_0^x g(t)\text{d}t} F(x)=f(x)e0xg(t)dt
  • 双中值(冲刺135必学,此处只提一下有这两种类型)
    1. 不要求 ξ ≠ η ξ≠η ξ=η :在同一区间 [ a , b ] [a,b] [a,b] 上用两次中值定理(柯西
    2. 要求 ξ ≠ η ξ≠η ξ=η :将区间 [ a , b ] [a,b] [a,b] 分成两个子区间,分别用

泰勒略。热知识:中值证明大题已连考三年泰勒.jpg


第3章 一元函数积分学

3.1 原函数的存在性

  • f ( x ) f(x) f(x) 在区间 I I I连续,则 f ( x ) f(x) f(x) 在区间 I I I 上必有原函数
  • f ( x ) f(x) f(x) 在区间 I I I 上有第一类间断点,则 f ( x ) f(x) f(x) 在区间 I I I没有原函数
    • 与变上限积分的关系: f ( x ) f(x) f(x) 连续 ⇒ ∫ a x f ( t ) d t \Rightarrow \int_{a}^{x} f(t) \text{d}t axf(t)dt 为原函数;当有第一类间断点时则不是原函数。

3.2 可积性

  • 必要条件
    • ∫ a b f ( x ) d x \int_{a}^{b} f(x) \text{d}x abf(x)dx 存在,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]有界
  • 充分条件
    • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]连续,则 ∫ a b f ( x ) d x \int_{a}^{b} f(x) \text{d}x abf(x)dx 存在
    • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]有界,且只有有限个间断点,则 ∫ a b f ( x ) d x \int_{a}^{b} f(x) \text{d}x abf(x)dx 存在
    • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上只有有限个第一类间断点,则 ∫ a b f ( x ) d x \int_{a}^{b} f(x) \text{d}x abf(x)dx 存在

3.3 积分技巧

  1. 定义、可爱因子!(既能正用也能逆用;注意区间长度;用夹逼验证步长
  2. 三角对称性:
    ∫ 0 π sin ⁡ n x d x = 2 ∫ 0 π 2 sin ⁡ n x d x \int_{0}^{\pi} \sin^n x \text{d}x=2\int_{0}^{\frac \pi 2}\sin^n x \text{d}x 0πsinnxdx=202πsinnxdx
    ∫ 0 π cos ⁡ n x d x = { 0 , n 为奇数 2 ∫ 0 π 2 cos ⁡ n x d x , n 为偶数 \int_{0}^{\pi} \cos^n x \text{d}x=\left\{\begin{matrix} 0,n为奇数\\ 2\int_{0}^{\frac \pi 2}\cos^n x \text{d}x,n为偶数 \end{matrix}\right. 0πcosnxdx={0,n为奇数202πcosnxdx,n为偶数
  3. 区间再现:对 ∫ a b f ( x ) d x \int_{a}^{b} f(x) \text{d}x abf(x)dx ,令 a + b − x = t ⇒ x = a + b − t a+b-x=t \Rightarrow x=a+b-t a+bx=tx=a+bt
  4. 锐角的正余弦轮换 ∫ 0 π 2 f ( sin ⁡ x , cos ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x , sin ⁡ x ) d x \int_{0}^{\frac \pi 2} f(\sin x, \cos x) \text{d}x=\int_{0}^{\frac \pi 2} f(\cos x,\sin x) \text{d}x 02πf(sinx,cosx)dx=02πf(cosx,sinx)dx (证明:区间再现
  5. 待定系数法:令被积函数 □ f = A • f ′ + B • f f \frac □f=\frac{A•f'+B•f}{f} f=fAf+Bf ,则 A • f ′ + B • f = □ A•f'+B•f=□ Af+Bf= ,解出系数即可凑微分
  6. 其他扩展技巧
    1. 若被积函数分为至少3部分,可先整体凑几部分入d求出原函数,再分部积分剩下的
    2. 分部积分前可提前处理d中以及被积函数中的常数,方便后续约分
    3. 积分再现,移项
    4. 与前式相加再÷2
    5. 对于方程,可选择两边在 [ a , b ] [a,b] [a,b]上求定积分(适用于二重积分)

3.4 变上限积分的性质

连续性

  • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]可积 ⇒ ∫ a x f ( t ) d t ∈ C [ a , b ] \Rightarrow \int_{a}^{x} f(t) \text{d}t \in C[a,b] axf(t)dtC[a,b]

可导性

前提: F ( x ) = ∫ a x f ( t ) d t F(x)=\int_{a}^{x} f(t) \text{d}t F(x)=axf(t)dt 连续,即 f ( x ) f(x) f(x) 可积

f ( x ) f(x) f(x) F ( x ) = ∫ a x f ( t ) d t F(x)=\int_{a}^{x} f(t) \text{d}t F(x)=axf(t)dt
x 0 x_0 x0连续可导, F ′ ( x 0 ) = f ( x 0 ) F'(x_0)=f(x_0) F(x0)=f(x0)
x 0 x_0 x0可去可导, F ′ ( x 0 ) = lim ⁡ x → x 0 f ( x 0 ) F'(x_0)=\lim_{x\rightarrow x_0\\} f(x_0) F(x0)=limxx0f(x0)
x 0 x_0 x0跳跃连续但不可导 F − ′ ( x 0 ) = f ( x 0 − ) , F + ′ ( x 0 ) = f ( x 0 + ) F_-'(x_0)=f(x_0^-),F'_+(x_0)=f(x_0^+) F(x0)=f(x0),F+(x0)=f(x0+)

奇偶性

  • f ( x ) 奇 ⇒ ∫ a x f ( t ) d t 偶 f(x)奇 \Rightarrow \int_{a}^{x} f(t) \text{d}t偶 f(x)axf(t)dt
  • f ( x ) 偶 ⇒ ∫ 0 x f ( t ) d t 奇 ( a 只能为 0 ) f(x)偶 \Rightarrow \int_{0}^{x} f(t) \text{d}t奇 (a只能为0) f(x)0xf(t)dt(a只能为0)(原因:奇函数 F ( 0 ) = 0 F(0)=0 F(0)=0

3.5 反常积分敛散性判定

  1. 定义:求 f ( x ) f(x) f(x) 的原函数
  2. p p p 积分(为方便描述类型,以下规定: p p p 积分——无穷区间型, q q q 积分——无界函数型)
    • 无穷区间 ∫ a + ∞ d x x p \int_{a}^{+\infin} \frac{\text{d}x}{x^p} a+xpdx { p > 1 ,  收敛 p ≤ 1 ,  发散 \left\{\begin{matrix} p>1,\ 收敛\\ p≤1,\ 发散 \end{matrix}\right. {p>1, 收敛p1, 发散
    • 瑕区间 ∫ a b d x ( x − a ) p , ∫ a b d x ( b − x ) p \int_{a}^{b} \frac{\text{d}x}{(x-a)^p},\int_{a}^{b} \frac{\text{d}x}{(b-x)^p} ab(xa)pdx,ab(bx)pdx { q < 1 ,  收敛 q ≥ 1 ,  发散 \left\{\begin{matrix} q<1,\ 收敛\\ q≥1,\ 发散 \end{matrix}\right. {q<1, 收敛q1, 发散
  3. 比较判别法:速记结论,一切皆可转化为 ∫ ? ? 1 x α ln ⁡ β x d x \int_?^? \frac1{x^\alpha \ln ^\beta x}\text{d}x ??xαlnβx1dx
    • 只有幂:正常用 p , q p,q p,q积分
    • 出现指数:无论是否混搭,指数决定一切
    • 只有对数:参考图像趋势( 0 + 0^+ 0+必收, + ∞ +∞ +必散)
    • 幂对混搭:幂指数不为 1 1 1则无视对数;幂指数为 1 1 1则再看对数,一律用 p p p积分 p > 1 p>1 p>1 收敛
  4. 积分中及时忽略无关因子,活用等价

    常用等价: x → 1 , ln ⁡ x = ln ⁡ ( 1 + x − 1 ) ∼ x − 1 ∼ . . . x \rightarrow 1,\ln x = \ln(1+x-1) \sim x-1 \sim ... x1,lnx=ln(1+x1)x1...
    原理:极限审敛法

3.6 定积分几何应用

常用的面积、体积、弧长公式:

  1. 平面图形面积: S = ∬ D d σ S=\iint\limits_{D}\text{d}\sigma S=Ddσ
  2. 旋转体体积: V = ∬ D 2 π r ( x , y ) d σ V=\iint\limits_D2\pi r(x,y)\text{d}\sigma V=D2πr(x,y)dσ ,其中 r ( x , y ) = ∣ a x + b y + c ∣ a 2 + b 2 r(x,y)=\frac{|ax+by+c|}{\sqrt{a^2+b^2}} r(x,y)=a2+b2 ax+by+c
    • V x = ∫ a b π f 2 ( x ) d x V_x=\int_a^b\pi f^2(x)\text{d}x Vx=abπf2(x)dx V y = ∫ a b 2 π ∣ x f ( x ) ∣ d x V_y=\int_a^b2\pi|xf(x)|\text{d}x Vy=ab2πxf(x)dx V = ∫ a b S 截面 ( x ) d x V=\int_a^bS_{截面}(x)\text{d}x V=abS截面(x)dx
    • 极坐标图形绕极轴旋转体体积: V = ∫ α β 2 3 π r 3 ( θ ) sin ⁡ θ d θ V=\int_\alpha^\beta\frac23 \pi r^3(\theta)\sin \theta\text{d}\theta V=αβ32πr3(θ)sinθdθ
  3. 弧长
    • L : y = f ( x ) , a ≤ x ≤ b L:y=f(x),a≤x≤b L:y=f(x),axb s = ∫ a b 1 + f ′ 2 ( x ) d x s=\int_a^b\sqrt{1+f'^2(x)}\text{d}x s=ab1+f′2(x) dx
    • L : x = x ( t ) , y = y ( t ) , a ≤ t ≤ b L:x=x(t),y=y(t),a≤t≤b L:x=x(t),y=y(t),atb s = ∫ a b x ′ 2 ( t ) + y ′ 2 ( t ) d t s=\int_a^b\sqrt{x'^2(t)+y'^2(t)}\text{d}t s=abx′2(t)+y′2(t) dt
    • L : r = r ( θ ) , α ≤ θ ≤ β L:r=r(\theta),\alpha≤\theta≤\beta L:r=r(θ),αθβ s = ∫ α β r 2 ( θ ) + r ′ 2 ( θ ) d θ s=\int_\alpha^\beta\sqrt{r^2(\theta)+r'^2(\theta)}\text{d}\theta s=αβr2(θ)+r′2(θ) dθ
  4. 侧面积: S = ∫ a b 2 π f ( x ) d s S=\int_a^b2\pi f(x)\text{d}s S=ab2πf(x)ds

3.7 微积分物理应用

通用思路——微元法:取一小段微元求其微小变化,再作积分

  1. 质心
    • 细棒的质心: x ˉ = ∫ a b x ρ ( x ) d x ∫ a b ρ ( x ) d x \bar x=\frac{\int_a^bxρ(x)\text{d}x}{\int_a^bρ(x)\text{d}x} xˉ=abρ(x)dxabxρ(x)dx a , b a,b a,b 为细棒的两个端点; ρ ( x ) ρ(x) ρ(x) 为线密度函数,即“单位长度上的质量”)
    • 平面图形的质心横坐标: x ˉ = ∬ D x d x d y ∬ D d x d y \bar x=\frac{\iint\limits_{D}x\text{d}x\text{d}y}{\iint\limits_{D}\text{d}x\text{d}y} xˉ=DdxdyDxdxdy
  2. 引力
    • 万有引力 F = k m 1 m 2 r 2 F=\frac{km_1m_2}{r^2} F=r2km1m2(两个物体的质量为 m 1 , m 2 m_1,m_2 m1,m2 ,其之间的距离为 r r r
    • 点电荷引力 F = k q 1 q 2 r 2 F=\frac{kq_1q_2}{r^2} F=r2kq1q2(将上式中的质量改为电量 q 1 , q 2 q_1,q_2 q1,q2 即可)
  3. 压力
    • 压强水压): p = ρ g h p=ρgh p=ρgh h h h 为液体中的深度
    • 压力 F = p • A F=p•A F=pA(通常考变压,故取一小块规则质体微元求其微小变化再作积分)
  4. 变力做功 W = F • l W=F•l W=Fl(必要时分而治之,建立不同坐标系计算)

已连续5年不曾出现任何形式的物理题(


第4章 多元函数微分学

4.1 重极限

  1. 基本性质大体同一元极限(没有洛)
  2. 初步判定:看分子分母次数。对于重极限 lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) g ( x , y ) \lim\limits_{(x,y)\rightarrow(0,0)\\}\frac{f(x,y)}{g(x,y)} (x,y)(0,0)limg(x,y)f(x,y) ,有
    上 > 下 —— 0 0 0 ;上 < 下 —— ∞ \infin ;上下同次 —— 不存在
  3. 夹逼的常用放缩手段
    • 取绝对值 f ( x ) → 0 ⇔ ∣ f ( x ) ∣ → 0 f(x)\rightarrow 0 \Leftrightarrow |f(x)|\rightarrow 0 f(x)0f(x)0 ,从而有 ∣ f ( x ) ∣ ≥ 0 |f(x)|≥0 f(x)0
    • 常用不等式
      • 2 a b ≤ a 2 + b 2 2ab≤a^2+b^2 2aba2+b2
      • ∣ x ± y ∣ ≤ ∣ x ∣ + ∣ y ∣ |x±y|≤|x|+|y| x±yx+y
    • “不超过 1 1 1”: ∣ x ∣ ∣ x ∣ + ∣ y ∣ ≤ 1 \frac {|x|}{|x|+|y|}≤1 x+yx1
  4. 证明重极限不存在
    • 取任意方向(如设 y = k x y=kx y=kx k k k 为任意常数)求得重极限随 k k k 而变,即证
    • 取不同路径(如分别取直线 y = k x y=kx y=kx 、抛物线 x = y 2 x=y^2 x=y2 )求得不同结果,即证

    改写成极坐标无法证明重极限不存在

4.2 连续、偏导数、全微分

4.2.1 连续

定义: lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) \lim\limits_{(x,y)\rightarrow(x_0,y_0)}f(x,y)=f(x_0,y_0) (x,y)(x0,y0)limf(x,y)=f(x0,y0)
(性质与一元函数连续完全对应)

4.2.2 偏导数

  1. 定义:
    • f x ′ ( x 0 , y 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x = ∂ ∂ x f ( x , y 0 ) ∣ x = x 0 f_x'(x_0,y_0)=\lim\limits_{\Delta x \rightarrow0\\}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}=\frac{\text{∂}}{\text{∂}x}f(x,y_0)|_{x=x_0} fx(x0,y0)=Δx0limΔxf(x0+Δx,y0)f(x0,y0)=xf(x,y0)x=x0
    • f y ′ ( x 0 , y 0 ) = lim ⁡ Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y = ∂ ∂ y f ( x 0 , y ) ∣ y = y 0 f_y'(x_0,y_0)=\lim\limits_{\Delta y \rightarrow0\\}\frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y}=\frac{\text{∂}}{\text{∂}y}f(x_0,y)|_{y=y_0} fy(x0,y0)=Δy0limΔyf(x0,y0+Δy)f(x0,y0)=yf(x0,y)y=y0

    公式法繁杂时务必转用定义法求偏导

  2. 求定点导数判定定点可导性先代后求
  3. 混合偏导相等条件:混合偏导连续

4.2.3 全微分

  1. 四条可微判定等价形式:
    1. Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = A Δ x + B Δ y + ο ( ρ ) \Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)=A\Delta x+B \Delta y+\omicron(ρ) Δz=f(x0+Δx,y0+Δy)f(x0,y0)=AΔx+BΔy+ο(ρ) (定义)
    2. lim ⁡ Δ x → 0 , Δ y → 0 [ f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) ] − [ A Δ x + B Δ y ] Δ x 2 + Δ y 2 = 0 \lim\limits_{\Delta x \rightarrow 0\\ ,\Delta y \rightarrow 0\\}\frac{[f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)]-[A\Delta x+B \Delta y]}{\sqrt{\Delta x^2+\Delta y^2}}=0 Δx0,Δy0limΔx2+Δy2 [f(x0+Δx,y0+Δy)f(x0,y0)][AΔx+BΔy]=0
    3. Δ z = f ( x , y ) − f ( x 0 , y 0 ) = A ( x − x 0 ) x + B ( y − y 0 ) + ο ( ρ ) \Delta z=f(x,y)-f(x_0,y_0)=A(x-x_0) x+B (y-y_0)+\omicron(ρ) Δz=f(x,y)f(x0,y0)=A(xx0)x+B(yy0)+ο(ρ)
    4. lim ⁡ x → x 0 , y → y 0 [ f ( x , y ) − f ( x 0 , y 0 ) ] − [ A ( x − x 0 ) x + B ( y − y 0 ) ] ( x − x 0 ) 2 + ( y − y 0 ) 2 = 0 \lim\limits_{x \rightarrow x_0\\,y\rightarrow y_0\\}\frac{[f(x,y)-f(x_0,y_0)]-[A(x-x_0) x+B (y-y_0)]}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0 xx0,yy0lim(xx0)2+(yy0)2 [f(x,y)f(x0,y0)][A(xx0)x+B(yy0)]=0
  2. 必要条件:两个偏导数 f x ′ ( x 0 , y 0 ) , f y ′ ( x 0 , y 0 ) f_x'(x_0,y_0),f_y'(x_0,y_0) fx(x0,y0),fy(x0,y0) 都存在
  3. 充分条件:两个偏导数 f x ′ ( x 0 , y 0 ) , f y ′ ( x 0 , y 0 ) f_x'(x_0,y_0),f_y'(x_0,y_0) fx(x0,y0),fy(x0,y0) ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 连续
  4. 充要条件——定义:
    ① 两个偏导数 f x ′ ( x 0 , y 0 ) , f y ′ ( x 0 , y 0 ) f_x'(x_0,y_0),f_y'(x_0,y_0) fx(x0,y0),fy(x0,y0) 是否都存在?
    lim ⁡ Δ x → 0 , Δ y → 0 Δ z − [ f x ′ ( x 0 , y 0 ) Δ x + f y ′ ( x 0 , y 0 ) Δ y ] Δ x 2 + Δ y 2 \lim\limits_{\Delta x \rightarrow 0\\ ,\Delta y \rightarrow 0\\}\frac{\Delta z-[f_x'(x_0,y_0)\Delta x+f_y'(x_0,y_0) \Delta y]}{\sqrt{\Delta x^2+\Delta y^2}} Δx0,Δy0limΔx2+Δy2 Δz[fx(x0,y0)Δx+fy(x0,y0)Δy] 是否为 0 0 0

快速判定可微性的充分条件:对于 lim ⁡ x → x 0 , y → y 0 f ( x , y ) − f ( x 0 , y 0 ) ( x − x 0 ) 2 + ( y − y 0 ) 2 = a \lim\limits_{x \rightarrow x_0\\,y \rightarrow y_0\\}\frac{f(x,y)-f(x_0,y_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=a xx0,yy0lim(xx0)2+(yy0)2 f(x,y)f(x0,y0)=a ,若 a = 0 a=0 a=0 则在该点可微,若 a ≠ 0 a≠0 a=0 则不可微

全微分的性质:对可二阶连续偏导的函数 z = z ( x , y ) z=z(x,y) z=z(x,y) ,已知其全微分 d z = P d x + Q d y \text{d}z=P\text{d}x+Q\text{d}y dz=Pdx+Qdy ,则 ∂ P ∂ y = ∂ Q ∂ x \frac {\text{∂}P}{\text{∂}y}=\frac{\text{∂}Q}{\text{∂}x} yP=xQ

即俩偏导“互相求对方变量的偏导”,结果相等。原因:满足混合偏导相等的条件——混合偏导连续

4.3 隐函数求导与全微分方程解法

  1. 隐函数求导公式
  2. 单方程:直接方程两边求导
  3. 方程组:
    • 直接方程组两边求导,解 n n n元方程组(必要时用克莱默法则减轻折磨)
    • 反解无关变量 t = t ( x , y , z ) t=t(x,y,z) t=t(x,y,z),代入消元
  4. 根据偏导数全微分方程反解二元函数:
    1. 偏积分:对偏导数做对应变量的不定积分,注意将“ + C +C +C”改为含剩余变量的辅助函数 ϕ ( □ ) \phi(□) ϕ()。较为简单且通用
    2. 凑微分:直接将所有偏导凑入 d \text{d} d形成同样结构,再去除两侧微分号 d \text{d} d 即可。或可用于选填

4.4 多元极值与最值

4.4.1 无条件极值

  1. 定义
    • 极大: f ( x 0 , y 0 ) ≥ f ( x , y ) f(x_0,y_0)≥f(x,y) f(x0,y0)f(x,y)
    • 极小: f ( x 0 , y 0 ) ≤ f ( x , y ) f(x_0,y_0)≤f(x,y) f(x0,y0)f(x,y)
      常用方法:极限的保号性
  2. 必要条件:若可导,则一阶偏导 f x ′ ( x 0 , y 0 ) = f y ′ ( x 0 , y 0 ) = 0 f'_x(x_0,y_0)=f'_y(x_0,y_0)=0 fx(x0,y0)=fy(x0,y0)=0
  3. 充分条件:
    f x ′ ( x 0 , y 0 ) = f y ′ ( x 0 , y 0 ) = 0 f'_x(x_0,y_0)=f'_y(x_0,y_0)=0 fx(x0,y0)=fy(x0,y0)=0 ,令 A = f x x ′ ′ , B = f x y ′ ′ , C = f y y ′ ′ A=f''_{xx},B=f''_{xy},C=f''_{yy} A=fxx′′,B=fxy′′,C=fyy′′ ,则
    • A C − B 2 > 0 AC-B^2>0 ACB2>0 时,有极值,且 A > 0 ⇒ A>0 \Rightarrow A>0 极小值, A < 0 ⇒ A<0 \Rightarrow A<0 极大值
    • A C − B 2 < 0 AC-B^2<0 ACB2<0 时,无极值
    • A C − B 2 = 0 AC-B^2=0 ACB2=0 时,无法判定(此时一般用定义判定)

4.4.2 条件极值

  • 方程组消元技巧:
    • 基本思路:两式分别乘以合适的式子再相减,尽可能多地消去复杂部分
    • 若两式中 x , y x,y x,y 具有轮换对称性,则必有 x = y x=y x=y
  • 活用各种初等数学技巧!

4.4.3 条件最值

方法:求出区域内部可能的极值点,再与边界上的最大最小值作比较


第5章 二重积分

5.1 二重积分的性质与换序

  • 基本性质:类比一元定积分
  • 交换积分次序通法:反解
    • 极坐标换序方法:往外画层层圆弧分割积分域( r r r 的上下限即为圆弧半径),各子域单独反解出 θ \theta θ 关于 r r r 的表达式

      从未考过,但鉴于24真题逆天程度建议未雨绸缪(

5.2 二重积分大题解法

  • 合理选取坐标系、积分次序
  • 常用积分方法
    1. 分割积分域,选取易算的
    2. 奇偶性:积分域对称时偶折半奇归0;若偶函数 f ′ ( 0 ) f'(0) f(0) 存在则必有 f ′ ( 0 ) = 0 f'(0)=0 f(0)=0
      • 推广——中心对称:若被积函数关于 x , y x,y x,y 均为奇函数,且积分域关于原点中心对称,则二重积分为0
    3. 轮换对称性(积分域关于直线 y = x y=x y=x 对称),左右两式相加消去复杂部分
    4. 变量代换(区间再现倒代换替换多次出现的部分等)
    5. 平移(极坐标平移奇函数平移等)

    近年二重积分大题基本都极难画出积分域图像(24除外,放了大水.jpg),需用纯代数方法得其图像性质,这种情况下通常用极坐标计算更为方便


第6章 常微分方程

【24数二-13题】伪可分离变量方程: y ′ = 1 ( x + y ) 2 y'=\frac1{(x+y)^2} y=(x+y)21
通法:将式中复杂部分整体换元
此题解法:令 u = x + y u=x+y u=x+y ,后同分离变量通法

6.1 可降阶的微分方程解法(数二专项)

  1. 不显含 y y y:令 y ′ = p , y ″ = p ′ y′=p,y″=p′ y=p,y=p
  2. 不显含 x x x:令 y ′ = p , y ″ = p d p d y y′=p,y″=p\frac{\text{d}p}{\text{d}y} y=p,y=pdydp

6.2 微分方程物理应用

  1. 变化率问题:将文字表述转化为微分方程
  2. 牛顿第二定律: F = m a = m d v d t = m d 2 s d t 2 F=ma=m\frac{\text{d}v}{\text{d}t}=m\frac {\text{d}^2s}{\text{d}t^2} F=ma=mdtdv=mdt2d2s
    • 求最远运动距离 s max ⁡ s_{\max} smax:令 v = 0 v=0 v=0 即可, s max ⁡ = s ∣ v = 0 s_{\max}=s|_{v=0} smax=sv=0
  3. 混合问题: d Q = d Q 1 − d Q 2 \text{d}Q=\text{d}Q_1-\text{d}Q_2 dQ=dQ1dQ2
  • 19
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Akira37

💰unneeded

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值