数二强化冲刺笔记(上):高等数学

24考研数二高数部分强化、冲刺阶段重要结论合集



第1章 函数、极限、连续

1.1 函数基本性质

(1) 奇偶性

  • 导函数 f ′ ( x ) f'(x) f(x)
    • 奇 → 偶 , 偶 → 奇 奇\rightarrow 偶, 偶\rightarrow 奇 ,
  • 变上限积分函数 ∫ a x f ( t ) d t \int_{a}^{x} f(t) \text{d}t axf(t)dt (前提:积分收敛
    • f ( x ) 奇 ⇒ ∫ a x f ( t ) d t 偶 f(x)奇\Rightarrow \int_{a}^{x} f(t) \text{d}t偶 f(x)axf(t)dt
    • f ( x ) 偶 ⇒ ∫ 0 x f ( t ) d t 奇 ( a 只能为 0 ) f(x)偶 \Rightarrow \int_{0}^{x} f(t) \text{d}t奇 (a只能为0) f(x)0xf(t)dt(a只能为0)(奇函数 F ( 0 ) = 0 F(0)=0 F(0)=0
  • 推广——对称性
    • f ( x + a ) = f ( x − a ) ⇔ f ( x ) f(x+a)=f(x-a) \Leftrightarrow f(x) f(x+a)=f(xa)f(x) 的图像关于直线 x = a x=a x=a 对称
    • f ( x + a ) = − f ( x − a ) ⇔ f ( x ) f(x+a)=-f(x-a) \Leftrightarrow f(x) f(x+a)=f(xa)f(x) 的图像关于 ( a , f ( a ) ) (a,f(a)) (a,f(a)) 中心对称

(2) 周期性

  • f ( x ) 周期为 T ⇒ f ( a x + b ) 周期为 T ∣ a ∣ f(x)周期为T \Rightarrow f(ax+b)周期为\frac {T} {|a|} f(x)周期为Tf(ax+b)周期为aT
  • 导函数 f ′ ( x ) f'(x) f(x)
    • f ( x ) 可导 .   f ( x ) 周期为 T ⇒ f ′ ( x ) 周期为 T f(x)可导.\ f(x)周期为T \Rightarrow f'(x)周期为T f(x)可导. f(x)周期为Tf(x)周期为T(反之不成立)
  • 变上限积分函数 ∫ a x f ( t ) d t \int_{a}^{x} f(t) \text{d}t axf(t)dt
    • ∫ a x f ( t ) d t 周期为 T ⇔ ∫ a a + T f ( x ) d x = 0 \int_{a}^{x} f(t) \text{d}t 周期为T \Leftrightarrow \int_{a}^{a+T} f(x) \text{d}x=0 axf(t)dt周期为Taa+Tf(x)dx=0
    • 对于 x → ∞ x \rightarrow \infin x 的极限,在周期函数 f ( x ) f(x) f(x) 中可用周期 T T T 替换 x x x ,从而以去除极限符号
  • 典型周期函数:三角函数

(3) 有界性

典型有界函数: ∣ sin ⁡ x ∣ ≤ 1 , ∣ cos ⁡ x ∣ ≤ 1 , ∣ arcsin ⁡ x ∣ ≤ π 2 , ∣ arctan ⁡ x ∣ < π 2 , ∣ arccos ⁡ x ∣ ≤ π |\sin x| ≤1, |\cos x|≤1,|\arcsin x|≤\frac{ \pi } {2},|\arctan x|<\frac{ \pi } {2},|\arccos x| ≤ \pi sinx1,cosx1,arcsinx2π,arctanx<2π,arccosxπ

连续函数有界的判定:

  • 闭区连续: f ( x ) ∈ C [ a , b ] ⇒ f ( x ) 在 [ a , b ] 上有界 f(x) \in C[a,b]\Rightarrow f(x)在[a,b]上有界 f(x)C[a,b]f(x)[a,b]上有界
  • 开区连续且两端极限存在: f ( x ) ∈ C ( a , b ) , 且 f ( a + ) , f ( b − ) 存在 ⇒ f ( x ) 在 ( a , b ) 内有界 f(x) \in C(a,b),且f(a^+),f(b^-)存在\Rightarrow f(x)在(a,b)内有界 f(x)C(a,b),f(a+),f(b)存在f(x)(a,b)内有界(可为无穷区间)
  • 根据导函数 f ′ ( x ) f'(x) f(x)有限区间 I I I (无论开闭)上有界 ⇒ f ( x ) \Rightarrow f(x) f(x) I I I 上有界

(4) 三角函数性质

  • 三角函数常用公式
    1. 诱导公式:奇变偶不变,符号看象限(指视 x x x为锐角时 sin ⁡ ( k π 2 + x ) \sin(\frac{k\pi}2+x) sin(2+x)的符号)
    2. 和角公式: s c c s sccs sccs c c s s ccss ccss cos ⁡ \cos cos
  • 反正弦函数 arcsin ⁡ x \arcsin x arcsinx、反余弦函数 arccos ⁡ x \arccos x arccosx
    • 定义域: [ − 1 ,   1   ] [-1,\ 1\ ] [1, 1 ]
    • 值域: arcsin ⁡ x ∈ [ − π 2 ,   π 2 ] ,   arccos ⁡ x ∈ [   0 ,   π   ] \arcsin x\in[-\frac\pi2,\ \frac\pi2],\ \arccos x\in[\ 0,\ \pi\ ] arcsinx[2π, 2π], arccosx[ 0, π ]
    • 常用公式: arcsin ⁡ x + arccos ⁡ x = π 2 \arcsin x + \arccos x = \frac\pi2 arcsinx+arccosx=2π
  • 反正切函数 arctan ⁡ x \arctan x arctanx、反余切函数 arccot  x \text{arccot}\ x arccot x
    • 定义域: ( − ∞ ,   + ∞ ) (-\infin,\ +\infin) (, +)
    • 值域: arctan ⁡ x ∈ ( − π 2 ,   π 2 ) ,  arccot  x ∈ (   0 ,   π   ) \arctan x\in(-\frac\pi2,\ \frac\pi2),\ \text{arccot}\ x\in(\ 0,\ \pi\ ) arctanx(2π, 2π), arccot x( 0, π )
    • 常用公式: arccot  x = arctan ⁡ 1 x \text{arccot}\ x=\arctan\frac1x arccot x=arctanx1 arctan ⁡ x + arctan ⁡ 1 x = π 2 \arctan x+\arctan\frac1x=\frac\pi2 arctanx+arctanx1=2π

(5) 其他

取整函数 [ x ] [x] [x] 的基本不等式: x − 1 < [ x ] ≤ x x-1<[x]≤x x1<[x]x

反函数: f ( x ) f(x) f(x) 与其反函数 f − 1 ( x ) f^{-1}(x) f1(x) 的图像关于直线 y = x y=x y=x 对称: f ( f − 1 ( x ) ) = f − 1 ( f ( x ) ) = x f(f^{-1}(x))=f^{-1}(f(x))=x f(f1(x))=f1(f(x))=x

1.2 极限基本性质

  1. 局部有界性:若 lim ⁡ x → x 0 f ( x ) \lim\limits_{x\rightarrow x_0\\} f(x) xx0limf(x) 存在,则 f ( x ) f(x) f(x) x 0 x_0 x0 某去心邻域内有界
  2. 保号性
    极限 ⇒ \Rightarrow 函数:前后皆为严格不等号(在去心邻域)
    函数 ⇒ \Rightarrow 极限:(无论函数是否严格不等号)固定推出不严格不等号

    极限 —— ≥≤,积分 —— ><

  3. 推论:保序性、绝对值,同上
  4. 极限值与无穷小的关系: lim ⁡ f ( x ) = A ⇔ f ( x ) = A + α ( x ) , 其中 lim ⁡ α ( x ) = 0 \lim f(x)=A \Leftrightarrow f(x)=A+\alpha (x), 其中\lim \alpha (x)=0 limf(x)=Af(x)=A+α(x),其中limα(x)=0

1.3 求极限方法

  • 麦克劳林公式
    • f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + . . . + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+...+\frac{f^{(n)}(0)}{n!}x^n+o(x^n) f(x)=f(0)+f(0)x+2!f′′(0)x2+...+n!f(n)(0)xn+o(xn)
    • e x = 1 + x + 1 2 ! x 2 + . . . + 1 n ! x n + o ( x n ) \text{e}^x=1+x+\frac1{2!}x^2+...+\frac1{n!}x^n+o(x^n) ex=1+x+2!1x2+...+n!1xn+o(xn)
    • ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − . . . + ( − 1 ) n − 1 n x n + o ( x n ) \ln(1+x)=x-\frac12x^2+\frac13x^3-...+\frac{(-1)^{n-1}}{n}x^n+o(x^n) ln(1+x)=x21x2+31x3...+n(1)n1xn+o(xn)
    • sin ⁡ x = x − 1 3 ! x 3 + . . . + ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 + o ( x 2 n + 1 ) \sin x=x-\frac1{3!}x^3+...+\frac{(-1)^n}{(2n+1)!}x^{2n+1}+o(x^{2n+1}) sinx=x3!1x3+...+(2n+1)!(1)nx2n+1+o(x2n+1)
    • cos ⁡ x = 1 − 1 2 ! x 2 + . . . + ( − 1 ) n ( 2 n ) ! x 2 n + o ( x 2 n ) \cos x=1-\frac1{2!}x^2+...+\frac{(-1)^n}{(2n)!}x^{2n}+o(x^{2n}) cosx=12!1x2+...+(2n)!(1)nx2n+o(x2n)
    • ( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + . . . + m ( m − 1 ) . . . ( m − n + 1 ) n ! x n + o ( x n ) (1+x)^m=1+mx+\frac{m(m-1)}{2!}x^2+...+\frac{m(m-1)...(m-n+1)}{n!}x^n+o(x^n) (1+x)m=1+mx+2!m(m1)x2+...+n!m(m1)...(mn+1)xn+o(xn)
  • 技巧与理解
    1. 对 lim ⁡ x → x 0 + f ( x ) = A 的理解 :  ① x → x 0 且 x ≠ x 0   ② f ( x ) → A 或 f ( x ) = A 对\lim\limits_{x\rightarrow x_0^+\\}f(x)=A的理解:\ ①x \rightarrow x_0且x≠x_0 \ \ ②f(x) \rightarrow A或f(x)=A xx0+limf(x)=A的理解: xx0x=x0  f(x)Af(x)=A
    2. lim ⁡ x → 0 + x x = 1 , lim ⁡ x → 0 + x α ln ⁡ β x = 0   ( α > 0 ,   β 任意 ) \lim\limits_{x\rightarrow 0^+\\}x^x=1, \lim\limits_{x\rightarrow 0^+\\}x^\alpha \ln^\beta x = 0\ (\alpha>0,\ \beta任意 ) x0+limxx=1,x0+limxαlnβx=0 (α>0, β任意)
    3. 常用不等式:
      • 2 a b ≤ a 2 + b 2 2ab≤a^2+b^2 2aba2+b2
      • sin ⁡ x < x < tan ⁡ x   , x ∈ ( 0 , π 2 ) \sin x < x < \tan x \ ,x \in (0,\frac{\pi}{2}) sinx<x<tanx ,x(0,2π)
      • x 1 + x < ln ⁡ ( 1 + x ) < x   , x ∈ [ 0 , + ∞ ) \frac {x} {1+x} < \ln (1+x) < x \ ,x \in [0,+∞) 1+xx<ln(1+x)<x ,x[0,+)
      • 1 + x ≤ e x 1+x≤e^x 1+xex
    4. 遇到连乘连除、多重乘方开方,善用对数求导法
    5. 复杂函数泰勒技巧:求导后(变简单)泰勒,再积回去(小 o o o直接升阶)
    6. 自证等价:等式两端同除,取极限得1
    7. 逆用牛莱公式——写回积分:由 β ( x ) − α ( x ) = ∫ α ( x ) β ( x ) d t \beta(x)-\alpha(x)=\int^{\beta(x)}_{\alpha(x)}\text{d}t β(x)α(x)=α(x)β(x)dt ,有 [ β ( x ) − α ( x ) ] f ( x ) = ∫ α ( x ) β ( x ) f ( x ) d t [\beta(x)-\alpha(x)]f(x)=\int^{\beta(x)}_{\alpha(x)}f(x)\text{d}t [β(x)α(x)]f(x)=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Akira37

💰unneeded

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值