高等数学下册学习笔记(二)

这篇笔记详述了多元函数微分法的核心概念,包括平面点集、极限、偏导数、全微分、多元复合函数及隐函数的求导。解释了聚点、函数的极限定义,以及偏导数和全微分的计算方法,并讨论了全微分形式不变性和隐函数求导的公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第九章多元函数微分法及其应用学习笔记

平面点集

  • 邻域
    平面 x O y xOy xOy上以某一点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)为圆心,半径为 δ \delta δ(某一正数)的圆内的所有点的全体叫做点 P 0 P_0 P0 的领域,记作 U ( P 0 , δ ) U(P_0,\delta) U(P0,δ)
  • 聚点
    对于任意给定的 δ > 0 \delta>0 δ>0,点P的去心邻域内总有E中的店,则P是E的聚点,即P是E的内点或边界点。

多元函数的极限

  • 定义:设二元函数 f ( P ) = f ( x , y ) f(P)=f(x,y) f(P)=f(x,y)的定义域为D, P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)是D的聚点,如果存在常数A,对于任意给定的正数 ε \varepsilon ε,总存在正数 δ \delta δ,使得当点 P ( x , y ) ∈ D ∩ U ( P 0 , δ ) P(x,y)∈D∩U(P_0,\delta) P(x,y)DU(P0,δ)时,都有 ∣ f ( P ) − A ∣ = ∣ f ( x , y ) − A ∣ < ε |f(P)-A|=|f(x,y)-A|<\varepsilon f(P)A=f(x,y)A<ε成立,就称常数A为函数 f ( x , y ) f(x,y) f(x,y) ( x , y ) → ( x 0 , y 0 ) (x,y)→(x_0,y_0) (x,y)(x0,y0)时的极限。

偏导数

  • 定义:设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某一邻域内有定义,当y固定在y0而x在x0处有增量 △ x △x x时,相应的函数有增量 f ( x 0 + △ x , y 0 ) − f ( x 0 , y 0 ) f(x_0+△x,y_0)-f(x_0,y_0) f(x0+x,y0)f(x0,y0)如果 lim ⁡
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值