第九章多元函数微分法及其应用学习笔记
平面点集
- 邻域
平面 x O y xOy xOy上以某一点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)为圆心,半径为 δ \delta δ(某一正数)的圆内的所有点的全体叫做点 P 0 P_0 P0 的领域,记作 U ( P 0 , δ ) U(P_0,\delta) U(P0,δ)。 - 聚点
对于任意给定的 δ > 0 \delta>0 δ>0,点P的去心邻域内总有E中的店,则P是E的聚点,即P是E的内点或边界点。
多元函数的极限
- 定义:设二元函数 f ( P ) = f ( x , y ) f(P)=f(x,y) f(P)=f(x,y)的定义域为D, P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)是D的聚点,如果存在常数A,对于任意给定的正数 ε \varepsilon ε,总存在正数 δ \delta δ,使得当点 P ( x , y ) ∈ D ∩ U ( P 0 , δ ) P(x,y)∈D∩U(P_0,\delta) P(x,y)∈D∩U(P0,δ)时,都有 ∣ f ( P ) − A ∣ = ∣ f ( x , y ) − A ∣ < ε |f(P)-A|=|f(x,y)-A|<\varepsilon ∣f(P)−A∣=∣f(x,y)−A∣<ε成立,就称常数A为函数 f ( x , y ) f(x,y) f(x,y)当 ( x , y ) → ( x 0 , y 0 ) (x,y)→(x_0,y_0) (x,y)→(x0,y0)时的极限。
偏导数
- 定义:设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某一邻域内有定义,当y固定在y0而x在x0处有增量 △ x △x △x时,相应的函数有增量 f ( x 0 + △ x , y 0 ) − f ( x 0 , y 0 ) f(x_0+△x,y_0)-f(x_0,y_0) f(x0+△x,y0)−f(x0,y0)如果 lim