Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
题目大意:
给定一棵二叉搜索树(BST),寻找BST中两个给定节点的最近公共祖先(LCA)。
根据维基百科对LCA的定义:“节点v与w的最近公共祖先是树T上同时拥有v与w作为后继的最低节点(我们允许将一个节点当做其本身的后继)”
例如,题目描述的样例中,节点2和8的最近公共祖先(LCA)是6。另一个例子,节点2和4的LCA是2,因为根据LCA的定义,一个节点可以是其本身的后继。
解题思路:
根据BST的性质,左子树节点的值<根节点的值,右子树节点的值>根节点的值
记当前节点为node,从根节点root出发
若p与q分别位于node的两侧,或其中之一的值与node相同,则node为LCA
否则,若p的值<node的值,则LCA位于node的左子树
否则,LCA位于node的右子树
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
TreeNode m = root;
if(m.val > p.val && m.val < q.val){
return m;
}else if(m.val > p.val && m.val > q.val){
return lowestCommonAncestor(root.left, p, q);
}else if(m.val < p.val && m.val < q.val){
return lowestCommonAncestor(root.right, p, q);
}
return root;
}
}