Ubuntu下自用软件配置全纪录(施工中)

本文记录了在Ubuntu 16.04上配置SLAM和TensorFlow环境的全过程,包括硬件环境、系统设定、Python环境(Anaconda,TensorFlow,OpenCV)、显卡驱动安装、SLAM相关库(如g2o,ceres,PCL)的编译安装,以及IDE(PyCharm,KDevelop)和常用软件(Chrome,Typora等)的配置。
摘要由CSDN通过智能技术生成

Ubuntu下自用软件配置(SLAM+Tensorflw)全纪录

Ubuntu断断续续用了将近两年了,也算踩了无数的坑,被各个配置折腾了一遍又一遍。

在这里对自己曾经犯的错误和应当使用的正确方式进行记录。

1.任务目标及软硬件环境说明

1.1 任务目标

首先来说一下自己在用的软件环境所需要包含的内容:
1、首先是python+tensorflow+cuda+cudnn等,用于深度学习、opencv的Python环境。
2、其次是C++ +OPENCV+PCL等,用于视觉slam学习和编程的环境。
3、最后是几个比较习惯的IDE和常用软件的安装。

写到这里,可能正在看的你应该也就明白了,这的东西主要是写给我自己看的。

1.2 硬件配置

其次是当前正在使用的硬件配置。
CPU:AMD Ryzen2600  6C12T oc 3.9Ghz
不得不说amd现在真的很不错了,主要还是线程数足够多这点真的是人类福音,配置slam环境时,编译安装各个库,都是靠着make -j8、j9,甚至j10,替我节省了大量的时间,之前所说的在锐龙一代上使用linux产生的各种问题也都没有产生。
但是也有一定的局限性,python下的opencv是基于numpy的,而numpy对于intel平台有更好的支持,当我在python下使用使用opencv的时候,个别情境下产生了明显的延迟(我并不确定这是否是由于锐龙平台的原因,毕竟我没有一台8500或者8600k进行横向比较,只能和一台G4560比较,但是相较之下,G4560在这个任务下表现更好。)

GPU:RTX 2060
2060是搭载张量核心(tensor cores)的显卡之中最便宜的入门产品,理论上可明显提升张量运算的速度和效率,这在我测试一些简单模型的时候的确有所体会。同时,张量核心允许显卡以fp16加载模型,牺牲模型精度从而将等效现存翻倍,这个的话,仅仅是听说,以及了解过相应的技术规格,并没有进行实际的测试,因此有待后续验证。

内存:2*8G 的海力士CJR内存
做过dl的人应该都知道内存>显存的道理,因此选择了16G,如果后续使用fp16,依旧足够。

2. 安装系统和系统基本设定

系统:ubuntu 16.04
​ 默认系统语言:英语,主要是保证文件的路径中只有英文,避免由于编码方式产生问题。
​ 进系统之后,首先修改apt-get软件源为清华的tuna。
​ 然后修改时间同步规则,否则回到win下时间会错乱12小时

3 .显卡驱动安装

采取进入tty文本的方式安装显卡驱动。

4. python环境配置

​ 我选择anaconda作为python解释器,conda的好处就应该不需要我多说了,这里依旧选择清华的tuna作为下载源软件源。

4.1 下载安装anaconda

​ 全程都是在命令行下大概是最蛋疼的一点了

4.2 启动和配置anaconda navigator

​ 我的原则是能使用图形界面就绝不敲命令行

在navigator里添加国内的第三方源

​ 敲命令是不可能敲命令的,这辈子都不可能敲的。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值