numpy.ndarray 在求mean,max,min的时候如何忽略跳过nan值,使用np.nanmean, np.nanmax

np.nanmean, np.nanmax, np.nanmin 的应用

我们在对一个python numpy数组求均值或最大值的时候,如果这个数组里包含nan,那么程序就会报错或者求出来的值是nan,如下所示

import numpy as np

In [1]: import numpy as np

In [2]: test = np.array([3,5,4,7,np.nan])

In [3]: m = test.mean()

In [4]: m
Out[4]: nan

In [5]: np.mean(test)
Out[5]: nan

那么我们如何来忽略这里面的nan,缺省值呢,numpy还有其他函数可以实现,那就是np.nanmean, np.nanmax 诸如此类的函数,可以看出来就是前面加上一个nan

In [6]: np.nanmean(test)
Out[6]: 4.75

In [7]: np.nanmax(test)
Out[7]: 7.0
<think>好的,我需要帮助用户确定给定的函数列表中哪些是NumPy的模块函数,而不是ndarray的方法。首先,我得回忆NumPy的文档和常用函数结构。 首先,用户提供的列表是:“max,min,nanmax,nanmin,argmax,argmin,std,var,nanstd,nanvar,sum,nansum,prod,nanprod,mean,nanmean,count_nonzero,quantile,nanquantile,percentile,nanpercentile,sort,argsort”。 接下来,我需要逐个检查每个函数是属于np模块下的顶级函数,还是作为ndarray对象的方法存在的。例如,np.max()是一个模块函数,而数组的array.max()则是方法。 1. **maxmin**:这两个可以作为np.max()和np.min(),同时也是ndarray的方法,如array.max()。所以需要确认用户问的是模块函数,所以这两个属于。 2. **nanmaxnanmin**:这些是处理忽略NaN的函数,属于np模块下的函数,如np.nanmax(),没有对应的ndarray方法,所以应计入。 3. **argmax和argmin**:np.argmax()和np.argmin()是模块函数,同时数组也有array.argmax()方法,但用户要模块函数,所以包括。 4. **std和var**:np.std()和np.var()是模块函数,数组也有方法,因此属于模块函数。 5. **nanstd和nanvar**:这些是模块函数,如np.nanstd(),没有方法形式。 6. **sum和nansum**:np.sum()是模块函数,数组有sum方法,同理nansum属于模块函数。 7. **prod和nanprod**:np.prod()是模块函数,数组有prod方法,nanprod是模块函数。 8. **meannanmean**:np.mean()是模块函数,数组有mean方法,nanmean同理。 9. **count_nonzero**:np.count_nonzero()是模块函数,没有对应的数组方法。 10. **quantile和nanquantile**:np.quantile()和np.nanquantile()是模块函数。 11. **percentile和nanpercentile**:np.percentile()和np.nanpercentile()是模块函数。 12. **sort和argsort**:这里需要注意,np.sort()是模块函数,但数组也有sort方法(不过数组的sort是原地操作),而argsort是np.argsort()模块函数,数组也有array.argsort()方法。所以这两个都算模块函数。 但需要确认是否存在某些函数可能只作为方法存在。例如,ndarray.sort()是原地排序,而np.sort()返回新数组。但用户询问的是模块函数,所以np.sort()和np.argsort()应计入。 最后,排除那些仅作为方法存在的函数。例如,像ndarray.fill()这样的就不是模块函数,但列表中的函数在模块级别都有对应的。 因此,所有列出的函数都是NumPy的模块函数,除了可能需要确认是否有例外。例如,count_nonzero是否是模块函数,是的,因为np.count_nonzero()存在。sort和argsort作为模块函数存在,所以都包括。 综上,整个列表中的函数都是NumPy模块函数,没有需要排除的。</think>以下是给定列表中属于NumPy模块函数(非`ndarray`方法)的完整分类: --- ### **NumPy模块函数(直接通过`np.xxx()`调用)** 1. **基础统计函数** - `np.max`, `np.min` - `np.nanmax`, `np.nanmin`(忽略NaN的最大/最小) - `np.argmax`, `np.argmin`(返回极的索引) - `np.std`, `np.var`(标准差、方差) - `np.nanstd`, `np.nanvar`(忽略NaN的标准差、方差) - `np.sum`, `np.nansum`(和、忽略NaN和) - `np.prod`, `np.nanprod`(乘积、忽略NaN乘积) - `np.mean`, `np.nanmean`(均忽略NaN) 2. **分位数与百分位数** - `np.quantile`, `np.nanquantile` - `np.percentile`, `np.nanpercentile` 3. **计数与排序** - `np.count_nonzero`(统计非零元素数量) - `np.sort`, `np.argsort`(排序、返回排序后索引) --- ### **关键说明** - **模块函数 vs. 方法**: 上述函数均可通过`np.函数名()`直接调用(如`np.max(arr)`),而非必须通过`ndarray`对象调用(如`arr.max()`)。 - **忽略NaN的函数**: 以`nan`开头的函数(如`nanmax`)会忽略数组中的`NaN`,适用于含缺失的数据。 - **排序函数的行为差异**: `np.sort()`返回排序后的新数组,而`ndarray.sort()`会原地修改数组。 --- ### **验证示例** ```python import numpy as np arr = np.array([1, 2, np.nan, 3]) # 模块函数调用示例 print(np.nanmax(arr)) # 输出 3.0(忽略NaN) print(np.argmin(arr)) # 输出 0(NaN被视为无穷大) print(np.percentile(arr, 50, method="nearest")) # 输出 2.0(中位数) ``` --- 若需进一步了解某个函数的具体用法,可随时追问!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值