numpy.ndarray 在求mean,max,min的时候如何忽略跳过nan值,使用np.nanmean, np.nanmax

np.nanmean, np.nanmax, np.nanmin 的应用

我们在对一个python numpy数组求均值或最大值的时候,如果这个数组里包含nan,那么程序就会报错或者求出来的值是nan,如下所示

import numpy as np

In [1]: import numpy as np

In [2]: test = np.array([3,5,4,7,np.nan])

In [3]: m = test.mean()

In [4]: m
Out[4]: nan

In [5]: np.mean(test)
Out[5]: nan

那么我们如何来忽略这里面的nan,缺省值呢,numpy还有其他函数可以实现,那就是np.nanmean, np.nanmax 诸如此类的函数,可以看出来就是前面加上一个nan

In [6]: np.nanmean(test)
Out[6]: 4.75

In [7]: np.nanmax(test)
Out[7]: 7.0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值