1. 二叉树的概念
二叉树是每个节点最多有两个子节点的树结构,通常称为“左子节点”和“右子节点”。二叉树常被用于实现数据结构的优先队列和集合,以及搜索算法中的二叉搜索树。
2. 二叉树的性质
- 每个节点最多有两个子节点。
- 左子节点的值通常小于其父节点的值,右子节点的值通常大于其父节点的值(这在二叉搜索树中尤为重要)。
- 二叉树可以是空的。
3. C++中的二叉树实现
在C++中,我们可以通过定义一个结构体或类来表示树的节点,每个节点包含数据部分、指向左子节点的指针和指向右子节点的指针。
struct TreeNode {
int value;
TreeNode* left;
TreeNode* right;
TreeNode(int x) : value(x), left(nullptr), right(nullptr) {}
};
4. 基本操作
-插入节点:向二叉树中插入一个新的值。
-删除节点:从二叉树中删除一个节点。
-搜索节点:查找二叉树中是否存在某个值。
插入节点
对于二叉搜索树,插入操作通常遵循以下步骤:
- 如果树为空,创建一个新节点作为根节点。
- 如果插入的值小于根节点的值,则递归地在左子树中插入。
- 如果插入的值大于根节点的值,则递归地在右子树中插入。
void insert(TreeNode*& root, int value) {
if (root == nullptr) {
root = new TreeNode(value);
return;
}
if (value < root->value) {
insert(root->left, value);
} else {
insert(root->right, value);
}
}
删除节点
删除节点的方法主要取决于节点的位置以及是否只能访问该节点。
- 如果不是尾节点,且可以访问其前一个节点,则将其前一个节点的
next指针指向待删除节点的下一个节点,然后释放待删除节点的内存。 - 如果是尾节点,则需要找到尾节点的前一个节点,将其
next指针指向null,然后释放尾节点的内存。 - 如果只能访问待删除的节点,则无法直接删除,因为无法访问其前一个节点以修改
next指针。这种情况下,通常需要额外的信息或方法来处理,例如使用双向链表或维护一个指向待删除节点前一个节点的引用。
搜索节点
搜索操作通常遵循以下步骤:
- 如果树为空,说明没有找到。
- 如果要搜索的值等于根节点的值,返回true。
- 如果要搜索的值小于根节点的值,递归地在左子树中搜索。
- 如果要搜索的值大于根节点的值,递归地在右子树中搜索。
bool search(TreeNode* root, int value) {
if (root == nullptr) {
return false;
}
if (root->value == value) {
return true;
} else if (value < root->value) {
return search(root->left, value);
} else {
return search(root->right, value);
}
}
2269

被折叠的 条评论
为什么被折叠?



