GCD<->GG(滑稽)
一_欧几里得算法
问题描述:给定整数a,b,求出最大公约数
解决方案:递归解决,
int f(int a,int b)
{//终止条件
if(a%b==0) return b;
return f(b,a%b);
}
解释(强行解释 ):觉得不好理解?没关系,多举几个例子,就会了,咳咳,这不是我的风格,这里还是贴出数学解释的链接,等到你觉得不好理解的时候,一定又会想起我建议的方法了.
GCD数学解释
二_扩展欧几里得算法
问题描述:给出两个正数a,b求出一组解x,y,d使得
ax+by=gcd(a,b)
在a<b的前提下
正片:
设ax1,+by1=gcd(a,b) ,
bx2+(a%b)y2=gcd(b,a%b),
因为gcd(a,b)==gcd(b,a%b),所以
ax1+by1=bx2+(a%b)y2.
a%b=a-[a/b]b(中间的’[]'表示向下取整)
a,b是确定的,那么我们经过变形可以得到
ax1+by1=ay2+b(x2-[a/b]*y2),
由对应关系我们可以得出结论:
x1=y2;y1=x2-[a/b]*y2我们可以看出x1,y1是基于x2,y2的,我们只需要递归这一过程,
直到最后b=0时,此时x=1,y=0,
1**a=gcd(a,b),**直接返回a,**因为(a<b),最后的代码如下
int exgcd(int a,int b,int &x,int &y)
{
if(b==0) return a;
int t=exgcd(b,a%b,x,y);
int x0=x,y0=y;
x=y0,y0=x0-(a/b)*y0;
return t;
}
最后布置两道题,分别对应gcd和exgcd
1.gcd:GCD–UVA10407
2.exgcd:GCD–10404
感悟:虽然蒟蒻前进的道路上还有很多事情阻碍,但是相信蒟蒻会和大家一起慢慢进步(大佬的话当我没说 ),今天再回过头来看这篇博文,还是觉得有些许粗糙,在B站上花了些许时间来观摩,在这里再贴出一个个人认为很不错的拓展欧几里得的视频供大家参考学习:
exgcd相关视频