欧几里得算法GCD和扩展欧几里得算法(小白理解<->小白友好)

GCD<->GG(滑稽)

一_欧几里得算法

问题描述:给定整数a,b,求出最大公约数
解决方案:递归解决,

int f(int a,int b)
{//终止条件
	if(a%b==0)	return b;
	return f(b,a%b);
}

解释(强行解释 ):觉得不好理解?没关系,多举几个例子,就会了,咳咳,这不是我的风格,这里还是贴出数学解释的链接,等到你觉得不好理解的时候,一定又会想起我建议的方法了.
GCD数学解释

二_扩展欧几里得算法

问题描述:给出两个正数a,b求出一组解x,y,d使得
ax+by=gcd(a,b)

在a<b的前提下
正片:
设ax1,+by1=gcd(a,b) ,
bx2+(a%b)y2=gcd(b,a%b),
因为gcd(a,b)==gcd(b,a%b),所以
a
x1+b
y1=bx2+(a%b)y2.
a%b=a-[a/b]b(中间的’[]'表示向下取整)
a,b是确定的,那么我们经过变形可以得到
a
x1+b
y1=a
y2+b(x2-[a/b]*y2),
由对应关系我们可以得出结论:
x1=y2;y1=x2-[a/b]*y2我们可以看出x1,y1是基于x2,y2的,我们只需要递归这一过程,
直到最后b=0时,此时x=1,y=0,
1**a=gcd(a,b),**直接返回a,**因为(a<b),最后的代码如下

int exgcd(int a,int b,int &x,int &y)
{
	if(b==0)	return a;
	int t=exgcd(b,a%b,x,y);
	int x0=x,y0=y;
	x=y0,y0=x0-(a/b)*y0;
	return t;
}

最后布置两道题,分别对应gcd和exgcd
1.gcd:GCD–UVA10407

2.exgcd:GCD–10404

感悟:虽然蒟蒻前进的道路上还有很多事情阻碍,但是相信蒟蒻会和大家一起慢慢进步(大佬的话当我没说 ),今天再回过头来看这篇博文,还是觉得有些许粗糙,在B站上花了些许时间来观摩,在这里再贴出一个个人认为很不错的拓展欧几里得的视频供大家参考学习:
exgcd相关视频

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Shallow_Carl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值