欧几里得与扩展欧几里得

欧几里得:
int gcd(int a, int b)
{
    return !b ? a : gcd(b, a%b);
}
int lcm(int a, int b)//最小公倍数
{
    return a / gcd(a, b) * b;//先除后乘避免溢出
}
扩展欧几里得:

存在整数对 (x,y) 使得 ax+by=gcd(a,b)
推导过程:
用递归求解扩展欧几里得,设已经求出了下一层递归的解,即: ax1+by1=gcd(a,b)(x1,y1)
a%b=a(a/b)b
(x1,y1) 代入到 bx1+(a%b)y1=gcd(a,b) 中,得
bx1+(a(a/b)b)y1=gcd(a,b) => ay1+b(x1(a/b)y1)=gcd(a,b)
b=0 时,显然有 a1+b0=gcd(a,b)
写成代码,模板如下

int extgcd(int a, int b, int &x, int &y)
{
    int d = a;
    if(b != 0)
    {
        d = extgcd(b, a%b, y, x);
        y -= (a / b) * x;
    }
    else x = 1, y = 0;
    return d;
}

求解不定方程:

c%gcd(a,b)=0 ,则存在整数对 (x,y) ,使得 ax+by=c
通过上面的方法可得到一组特解 (x0,y0) 使得 ax+by=gcd(a,b) ,那么如何在无穷多个解中求出 xy 最小正整数解。

证明:

首先 ax0+akb/gcd(a,b)+by0akb/gcd(a,b)=gcd(a,b)
a(x0+kb/gcd(a,b))+b(y0ka/gcd(a,b))=gcd(a,b)
通解为 x=x0+kb/gcd(a,b)y=y0ka/gcd(a,b) ,其中 k=...2,1,0,1,2...
在所有解中最小的正整数为 (x0+b/gcd(a,b))
所以对于方程 ax+by=c ,最小正整数解(以 x 为例)为(x0c/gcd(a,b)+b/gcd(a,b))
注意:若 b 为负数,需将b转换为正数。

int cal(int a, int b, int c)
{
    int x, y;
    int gcd = extgcd(a, b, x, y);
    if(c % gcd != 0) return -1;
    x *= c/gcd;
    b /= gcd;
    if(b < 0) b = -b;
    int ans = x % b;
    if(ans <= 0) ans += b;
    return ans;
}

同余方程:

根据上面的内容,我们可以得到:

axb(mod n) ,转化为 ax+ny=b ,当 b 时,方程有 gcd(a,n) 个解。
ax1(mod n) ,如果 gcd(a,n)=1 ,则方程有唯一解。

解线性方程ax+by=c

bool cal(int a, int b, int c)
{
    int x0, y0;
    int d = extgcd(a, b, x0, y0);
    if(c % d) return false;
    int x = x0*c/d, y = y0*c/d;
    kx = b/d, ky = -a/d;
    return true; // 解集为:(x+kx*t, y+ky*t),t为整数
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值