Summer Holiday HDU - 1827(tarjan缩点)

本文探讨了在图论中缩点的概念及其在解决特定问题中的应用,通过使用Tarjan算法进行强连通分量分析,实现了高效的通知传播模型。文章详细介绍了如何通过缩点减少图的复杂性,并利用Tarjan算法找到入度为零的节点,从而确定最少的通知次数和最低成本。
摘要由CSDN通过智能技术生成

题目:听说lcy帮大家预定了新马泰7日游,Wiskey真是高兴的夜不能寐啊,他想着得快点把这消息告诉大家,虽然他手上有所有人的联系方式,但是一个一个联系过去实在太耗时间和电话费了。他知道其他人也有一些别人的联系方式,这样他可以通知其他人,再让其他人帮忙通知一下别人。你能帮Wiskey计算出至少要通知多少人,至少得花多少电话费就能让所有人都被通知到吗? 

先解释一下缩点(反正我刚开始不知道啥叫缩点,菜鸡本鸡):就是把一个强连通分量看成一个点。

题解:这一题的话,我们其实只要给入度为零的打电话就行了,因为入度为零代表没人给这个强连通点打如电话,我们强连通缩点以后利用tarjan的时候顺便记录一下每个强连通点的最小花费就行(没错,就是这个人,给我打!)

AC代码(感觉写的有点乱,凑活着看吧):

#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxn=1e5+5;
int n,m,low[maxn],dfn[maxn],stack[maxn],vis[maxn],cnt,ans,tot,belong[maxn],in[maxn],cost[maxn];
int lcost[maxn];
vector<int>g[maxn];
void init(){
	ans=0,tot=0,cnt=0;
	memset(low,0,sizeof(low));
	memset(dfn,0,sizeof(dfn));
	memset(vis,0,sizeof(vis));
	memset(in,0,sizeof(in));
	memset(cost,0,sizeof(cost));
	memset(lcost,inf,sizeof(lcost));
	memset(belong,0,sizeof(belong));
	for(int i=0;i<=maxn;i++)g[i].clear();
}
void tarjan(int u){
	low[u]=dfn[u]=++tot;
	stack[++cnt]=u;
	vis[u]=1;
	for(int i=0;i<g[u].size();i++){
		int v=g[u][i];
		if(!dfn[v]){
			tarjan(v);
			low[u]=min(low[v],low[u]);
		}
		else if(vis[v]){
			low[u]=min(low[u],dfn[v]);
		}
	}
	if(dfn[u]==low[u]){
		ans++;
		for(;;){
			int t=stack[cnt--];
			vis[t]=0;
			belong[t]=ans;
			lcost[ans]=min(cost[t],lcost[ans]);
			if(t==u)break;
		}
	}
}
int main(){
	while(scanf("%d%d",&n,&m)!=EOF){
		init();
		for(int i=1;i<=n;i++)cin>>cost[i];
		for(int i=1;i<=m;i++){
			int x,y;
			scanf("%d%d",&x,&y);
			g[x].push_back(y);
		}
		for(int i=1;i<=n;i++){
			if(!dfn[i])tarjan(i);
		}
		for(int i=1;i<=n;i++){
			for(int j=0;j<g[i].size();j++){
				int v =g[i][j];
				if(belong[i]!=belong[v]){
					in[belong[v]]++;
				}
			}
		}
		if(ans==1){ 
			printf("%d %d\n",ans,lcost[1]);
			continue;
		}
		int ans1=0,cost1=0;
		for(int i=1;i<=ans;i++){
			if(in[i]==0)ans1++,cost1+=lcost[i];
		}
	    cout<<ans1<<" "<<cost1<<endl;
	}
} 
 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值