机器学习:聚类

聚类是机器学习中的一种无监督学习方法,它旨在将数据集中的样本分成相似的组别或簇,使得同一组内的样本相互之间更为相似,而不同组之间的样本差异较大。以下是聚类的一些关键概念和方法:

1.K均值聚类(K-Means Clustering):

K均值聚类(K-Means Clustering)是一种常见的无监督学习算法,用于将数据集中的样本划分成K个簇。这里简要介绍K均值聚类的基本原理和步骤:

  • 初始化: 选择K个初始中心点,通常从数据集中随机选择。这些中心点将作为簇的代表。

  • 分配数据点: 对数据集中的每个样本,将其分配给距离最近的中心点所对应的簇。这一步使用欧氏距离或其他距离度量。

  • 更新簇中心: 对每个簇,计算其所有成员样本的均值,将均值作为新的簇中心。

  • 重复迭代: 重复步骤2和步骤3,直到簇中心不再发生显著变化或达到预定的迭代次数。

  • 输出结果: 最终得到K个簇,每个簇包含一组相似的数据点。

K均值聚类的优点包括简单易实现、计算效率高,尤其对于大规模数据集较为适用。然而,它也有一些缺点,如对初始中心点的敏感性、对异常值的敏感性,以及对非球形簇结构的适应性较差。

在实际应用中,为了避免局部最优解,常常运行算法多次并选择最好的结果。同时,选择合适的簇数K也是关键,可以通过Elbow方法等方式进行估计。

2.层次聚类(Hierarchical Clustering):

层次聚类(Hierarchical Clustering)是一种无监督学习方法,它以树状结构(树状图或树状图谱)表示数据集中样本的聚类关系。层次聚类可以分为两种主要方法:凝聚层次聚类和分裂层次聚类。

  • 凝聚层次聚类(Agglomerative Hierarchical Clustering):

    • 初始状态: 将每个数据点视为一个单独的簇。
    • 合并过程: 通过迭代地合并最相似的簇,形成一个层次结构,直至所有数据点合并为一个大的簇。
    • 相似度度量: 通过定义不同的相似度度量(如欧氏距离、曼哈顿距离等),确定簇的相似性。
  • 分裂层次聚类(Divisive Hierarchical Clustering):

    • 初始状态: 将所有数据点视为一个大的簇。
    • 分裂过程: 通过迭代地将最不相似的簇分裂为较小的簇,形成一个层次结构,直至每个数据点都成为一个独立的簇。
    • 相似度度量: 同样使用不同的相似度度量确定簇的相似性。

在层次聚类的结果中,树状结构的每个节点代表一个簇,叶子节点表示单个数据点。这种层次结构可以通过树状图直观地展示不同层次的聚类结果。

层次聚类的优点包括不需要预先指定簇的数量、结果的可视化直观,但缺点包括计算复杂度较高,特别是对于大型数据集。在选择相似度度量和连接方式(单链接、全链接等)时,需要根据具体问题和数据特征进行调整。

3.DBSCAN(Density-Based Spatial Clustering of Applications with Noise):

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种密度聚类算法,它能够发现任意形状的簇,并在聚类的同时识别噪声点。以下是DBSCAN的基本原理和步骤:

  • 核心对象(Core Points): 对于每个数据点,以指定的半径(ε,epsilon)内的邻域内的数据点数量(包括自身),如果这个数量大于等于一个预定的阈值(MinPts),则该点被认为是核心对象。

  • 密度可达(Density-Reachable): 如果一个点在另一个点的邻域内,并且这个点是核心对象,那么这两个点是密度可达的。

  • 密度相连(Density-Connected): 如果存在一个核心对象C,对于两个点A和B,A和B都是密度可达于C,那么A和B是密度相连的。

  • 聚类形成: DBSCAN从数据集中选择一个未被访问的核心对象,通过密度可达性和密度相连性找到其密度可达的所有点,将它们组成一个簇。然后,重复这个过程,直到所有核心对象都被访问为止。

  • 噪声点: 那些不是任何簇成员的数据点被标记为噪声点。

DBSCAN的优点包括对于不同形状和大小的簇具有很好的适应性,而且能够识别和排除噪声。然而,DBSCAN对于选择合适的半径参数和MinPts参数比较敏感,而且在处理具有不同密度区域的数据时可能表现不佳。

在使用DBSCAN时,需要根据具体的数据集特点进行参数调优,以获得满足实际需求的聚类效果。

4.谱聚类(Spectral Clustering):

谱聚类(Spectral Clustering)是一种基于图论和矩阵分解的聚类方法,适用于发现复杂结构和非凸形状的簇。以下是谱聚类的基本原理和步骤:

  • 相似度图构建: 对给定的数据集,通过计算每对样本之间的相似度,构建相似度矩阵(相似度图)。常用的相似度度量包括高斯核函数、K邻近法等。

  • 拉普拉斯矩阵计算: 从相似度矩阵中构建拉普拉斯矩阵。拉普拉斯矩阵有多种形式,包括未标准化拉普拉斯矩阵、对称标准化拉普拉斯矩阵等。

  • 特征向量分解: 对拉普拉斯矩阵进行特征向量分解,得到相应的特征向量。

  • 特征向量划分: 将特征向量按照对应的特征值进行划分,形成新的表示样本的低维空间。这个过程通常使用K均值等方法。

  • 形成聚类: 利用低维空间中的样本表示,应用传统的聚类算法(如K均值)将样本划分成K个簇。

谱聚类的优势在于能够处理复杂的簇结构,且对数据的分布形状没有假设。然而,谱聚类的计算复杂度较高,尤其是在大型数据集上。在实际应用中,选择相似度度量、相似度图构建方法以及特征向量划分的策略都需要谨慎考虑,以获得良好的聚类效果。

5.高斯混合模型(Gaussian Mixture Model,GMM):

高斯混合模型(Gaussian Mixture Model,GMM)是一种概率模型,用于对数据集进行聚类和密度估计。它假设数据是由多个高斯分布组合而成的,每个高斯分布称为一个分量。以下是高斯混合模型的基本原理和步骤:

  1. 模型表示: GMM由多个高斯分布组成,每个高斯分布对应一个聚类簇。这些高斯分布的混合形成了整个数据的概率密度函数。

  2. 参数: GMM的参数包括每个高斯分布的均值、协方差矩阵和混合系数(每个分量对整体的贡献权重)。

  3. 概率密度函数: GMM的概率密度函数表示为各个分量的加权和,其中权重由混合系数确定。对于数据点x,其属于第i个分量的概率为:P(X|\theta _{i})=\frac{1}{(2\pi ^{D/2}\left | \sum _{i} \right |^{1/2})}exp(-\frac{1}{2}(x-\mu _{i})^{T\sum_{i}^{-1}}(x-\mu _{i}))

  4. 模型训练: 使用期望最大化(Expectation-Maximization,EM)算法进行训练。在E步骤中,根据当前参数计算每个样本属于每个分量的概率;在M步骤中,更新模型的参数,使得似然函数最大化。

  5. 选择聚类数: 在使用GMM时,通常需要选择合适的聚类数(分量数量)。常用的方法包括BIC(Bayesian Information Criterion)和AIC(Akaike Information Criterion)。

GMM的优势在于对数据分布的建模更加灵活,能够处理复杂的数据结构。它在图像分割、异常检测、语音识别等领域有广泛应用。然而,需要谨慎处理过拟合的问题,并确保选择合适的聚类数和初始化参数。

6.聚类评估指标:

聚类评估指标用于衡量聚类算法对数据的分组质量。以下是一些常用的聚类评估指标:

  • Silhouette分数: Silhouette分数是一种用于度量簇内样本紧密度和簇间样本分离度的指标。其取值范围在[-1, 1]之间,值越高表示簇内样本越紧密,簇间样本越分散。

  • Calinski-Harabasz指数: 该指数通过簇内的紧密度和簇间的分离度的比值来评估聚类的质量。分数越高表示聚类效果越好。

  • Davies-Bouldin指数: 这是一种评估簇的紧密度和分散度之间平衡性的指标。低值表示簇内紧密度高,簇间分离度大。

  • 轮廓系数: 轮廓系数结合了簇内样本的紧密度和簇间样本的分离度,其值在[-1, 1]之间。高轮廓系数表示簇的质量较高。

  • Gap统计量: Gap统计量通过比较实际数据与随机数据的聚类结果,评估实际聚类效果是否显著优于随机。Gap值越大表示聚类效果越好。

  • CHI(Calinski-Harabasz Index): 类似于Calinski-Harabasz指数,用于衡量簇的紧密度和分散度。

  • ARI(Adjusted Rand Index): 用于评估两个聚类结果的相似性,考虑到了由于纯度引起的随机性。

  • NMI(Normalized Mutual Information): 也用于度量两个聚类结果的相似性,考虑到了簇的大小和相互信息。

选择合适的聚类评估指标通常取决于数据的性质和聚类任务的目标。在实际应用中,可以结合多个指标来全面评估聚类效果。

7.特征缩放:

在进行聚类任务时,特征缩放对于某些聚类算法的性能和稳定性至关重要。以下是在进行聚类时应用特征缩放的一些建议:

  • K均值聚类: K均值聚类对特征的尺度非常敏感,因为它使用欧氏距离来度量样本之间的相似性。在应用K均值之前,通常需要对特征进行标准化或归一化。

  • 层次聚类: 层次聚类的性质使得它对特征缩放的要求相对较小。然而,如果数据在某个维度上的尺度远大于其他维度,仍然建议进行标准化。

  • DBSCAN: DBSCAN使用样本之间的密度来进行聚类,因此对特征缩放的敏感性相对较低。然而,如果数据在某个维度上的尺度相差较大,仍建议进行标准化以提高算法的鲁棒性。

  • 谱聚类: 谱聚类的性能受特征尺度的影响较小,但标准化可以有助于提高算法的收敛速度和稳定性。

  • 高斯混合模型: 高斯混合模型对于特征的尺度较为敏感,特别是在使用EM算法进行参数估计时。标准化或归一化是推荐的预处理步骤。

总体来说,对于大多数聚类算法,特征缩放都是一个有益的预处理步骤,有助于提高算法的性能和对数据的鲁棒性。选择标准化或归一化通常取决于数据的分布和算法的特性。在应用聚类算法之前,建议先观察数据的特征尺度并选择适当的特征缩放方法。

8.处理异常值:

处理异常值是数据预处理的重要环节,特别是在聚类任务中,异常值可能会对结果产生不良影响。以下是一些处理异常值的常见方法:

  • 删除异常值: 最简单的方法是直接删除数据集中的异常值。然而,这样做可能导致信息的丢失,特别是在数据量较小的情况下。

  • 截尾/缩尾处理: 将超过一定范围的数值截尾或缩尾到一个预定的范围内。这样可以减轻异常值对整体分布的影响。

  • 替代异常值: 将异常值替代为数据的均值、中位数或其他合适的代理值。这有助于保留数据的整体结构,但可能引入一些偏差。

  • 使用缩尾均值/中位数: 计算修剪掉异常值后的均值或中位数。这有助于减轻异常值对统计指标的影响。

  • 使用缩放: 对数据进行缩放,例如使用Robust标准化,它对异常值更具鲁棒性。

  • 使用聚类检测异常值: 利用聚类算法,将数据点分为簇,并识别那些不属于任何簇或属于较小簇的数据点作为异常值。

  • 使用统计方法: 基于统计学的方法,如Z分数或箱线图,来检测和处理异常值。

在处理异常值时,需要综合考虑数据的特点、业务需求以及所使用的聚类算法对异常值的敏感性。同时,应该谨慎处理异常值,以免误伤正常数据或引入不合理的处理。

9.选择合适的距离度量:

选择合适的距离度量是进行聚类任务时的关键决策之一,因为不同的距离度量可能导致完全不同的聚类结果。以下是一些常用的距离度量以及它们的应用场景:

  • 欧氏距离(Euclidean Distance): 在欧氏空间中测量两点之间的直线距离。适用于数据特征的尺度相似且线性相关的情况。K均值聚类通常使用欧氏距离。

  • 曼哈顿距离(Manhattan Distance): 也称为城市街区距离,是两点在每个维度上坐标数值差的绝对值之和。适用于特征的尺度差异较大的情况。

  • 切比雪夫距离(Chebyshev Distance): 在所有维度中,两点坐标数值差的最大值。适用于特征的尺度差异非常大,但在某些维度上相似的情况。

  • 闵可夫斯基距离(Minkowski Distance): 是欧氏距离和曼哈顿距离的泛化形式。当p=2时,退化为欧氏距离;当p=1时,为曼哈顿距离。

  • 余弦相似度(Cosine Similarity): 衡量两个向量的夹角余弦值,而不考虑它们的绝对大小。适用于文本挖掘等场景。

  • Jaccard相似度(Jaccard Similarity): 用于测量两个集合的相似性,是两个集合交集大小与并集大小的比值。

  • 汉明距离(Hamming Distance): 主要用于度量两个等长字符串在相同位置上不同元素的个数。

  • 地球距离(Haversine Distance): 用于度量地球上两点之间的距离,经常在地理空间数据中使用。

选择合适的距离度量应该考虑数据的特性、问题的领域以及算法的要求。在实际应用中,通常需要根据具体情况进行尝试和调整,以获得更符合数据结构和问题背景的聚类结果。

10.处理高维数据:

处理高维数据的聚类面临着一些挑战,如维度灾难和稀疏性。以下是一些处理高维数据聚类的方法和建议:

  • 特征选择: 通过选择最相关的特征,可以降低维度灾难的影响。使用特征选择方法,如方差阈值、互信息、LASSO等,以排除对聚类贡献较小的特征。

  • 降维技术: 使用降维技术可以将高维数据映射到一个较低维的子空间,保留数据的主要信息。常用的降维方法包括主成分分析(PCA)、t-SNE、LLE等。这有助于改善聚类效果并减少计算开销。

  • 密度聚类: 密度聚类算法(如DBSCAN)对高维数据相对较为鲁棒,因为它们不依赖于欧氏距离或维度的选择。这种方法在处理高维数据时可能更有效。

  • 谱聚类: 谱聚类通常在较低维的特征空间中进行,可以通过选择前几个主成分来减少数据的维度。这有助于处理高维数据并提高算法的效率。

  • 考虑稀疏性: 针对高维数据的稀疏性,可以选择适用于稀疏数据的聚类算法,例如谱聚类或基于子空间的聚类方法。

  • 正则化聚类: 一些聚类算法已经考虑到了高维数据的问题,例如使用L1或L2正则化项。这有助于在优化过程中稀疏地选择有用的特征。

  • 利用领域知识: 如果有领域知识可用,可以通过专业知识来选择重要的特征或设计更有效的特征表示,从而减小高维数据的影响。

  • 并行计算: 对于大规模高维数据,可以考虑使用并行计算技术,如分布式计算框架,以加速聚类算法的执行。

在处理高维数据时,一种常见的做法是结合多个方法,观察它们的效果,并根据实验结果选择最适合数据集和任务的方法。

11.选择合适的聚类数:

 选择适当的聚类数需要结合数据的特点和任务需求。以下是一些常用的方法:

  • 肘部法则(Elbow Method):通过绘制聚类数与评估指标(如簇内平方和)的图表,找到肘部,即在该点增加聚类数不再显著改善指标。这通常对应于一个合适的聚类数。

  • 轮廓系数(Silhouette Score):计算每个数据点的轮廓系数,然后计算整体的平均值。聚类数对应于具有最大轮廓系数的模型。

  • Calinski-Harabasz指数:该指数考虑了簇内的离散度和簇间的相似性,寻找一个能够最大化这个指数的聚类数。

  • Gap统计量:通过比较原始数据和随机数据集的性能,可以使用Gap统计量来评估不同聚类数的表现。

  • 层次聚类图:在层次聚类中,绘制树状图(树状图)可以帮助直观地确定合适的聚类数。

记住,最终的选择可能是一项主观决策,并可能需要多个方法的结合。同时,领域专业知识也是重要的因素,以确保聚类数的选择符合实际情况。

12.可解释性和应用场景:

聚类的可解释性和应用场景取决于具体的算法、数据以及任务需求。以下是一些通用的观点:

  • 可解释性:聚类算法的可解释性指的是人们能够理解和解释聚类结果的程度。K均值聚类相对较易解释,因为它将数据划分为具有相似均值的簇。层次聚类的树状结构也提供了直观的可解释性。

  • 应用场景

    • 市场细分:在市场营销中,聚类可用于将消费者分为不同的群体,以便更好地理解其需求和行为。

    • 图像分割:在计算机视觉中,聚类可用于图像分割,将图像中相似的区域组合在一起。

    • 异常检测:通过聚类可以识别数据中的异常点,因为异常点可能与正常点在某些特征上有所不同。

    • 推荐系统:将用户或产品聚类可以帮助建立更精准的推荐系统,将相似的用户或产品放在一组。

    • 基因表达分析:在生物信息学中,聚类可用于对基因表达数据进行分析,以发现相似的表达模式。

  • 挑战:在实际应用中,聚类可能面临的挑战之一是定义合适的特征和距离度量,以及处理高维数据。此外,聚类的结果可能因初始条件而异,因此需要谨慎评估和解释结果。

总体而言,聚类在数据挖掘、模式识别和信息检索等领域有广泛应用,但在选择和解释结果时需要根据具体情况进行权衡。 

13.迭代优化: 

聚类的迭代优化通常涉及到不断更新簇分配和簇中心,以使聚类结果更加准确。这过程通常通过迭代执行以下步骤来实现,以K均值聚类为例:

  • 初始化:选择初始的簇中心。这可以是从数据中随机选择或使用其他方法如K均值++。

  • 分配数据点:将每个数据点分配到最近的簇中心,通常使用欧氏距离或其他距离度量。

  • 更新簇中心:计算每个簇的新中心,通常为该簇中所有数据点的平均值。

  • 检查收敛:检查算法是否收敛,即簇中心的更新是否足够小。如果没有达到收敛标准,则返回第2步。

这个过程不断迭代,直到满足收敛条件为止。在每一次迭代中,数据点被重新分配到簇,簇中心被重新计算,直至收敛为止。

优化技巧

  • 初始点的选择:良好的初始点选择可以加速收敛,例如K均值++算法就是通过选择更合适的初始点来提高算法的性能。

  • 迭代次数:设置合适的迭代次数,避免过多或过少的迭代。可以使用收敛标准来判断是否停止迭代。

  • 并行化:针对大规模数据集,可以考虑并行化计算,加速迭代过程。

  • 距离度量的优化:根据数据的特性选择合适的距离度量,有时候使用加速技术,如KD树,可以提高计算效率。

这些优化技巧有助于提高聚类算法的效率和收敛速度。选择适当的技巧取决于数据的性质和问题的要求。

在实际应用中,选择适当的聚类方法和簇数取决于数据的特点以及问题的需求。聚类在数据分析、图像分割、推荐系统等领域都有广泛的应用。

  • 16
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在K-means聚类算法中,K值的选取是一个重要的步骤。K值表示需要聚类的簇的个数。选取合适的K值对于获取准确且有意义的聚类结果非常重要。有几种常用的方法可以帮助选择K值。 一种方法是通过观察轮廓系数来选择K值。轮廓系数是一种衡量聚类质量的指标,它考虑了数据点到所属簇内部的紧密度和与其他簇的分离程度。我们可以尝试不同的K值,计算每个数据点的轮廓系数,并计算加权平均轮廓系数。选择具有最大轮廓系数的K值作为最佳K值。 另一种方法是使用Gap统计量法。Gap统计量法通过比较原始数据集与随机生成的参考数据集的对数误差来选择K值。具体步骤包括将原始数据集输入KMeans聚类算法,计算原始数据集的对数误差,然后生成一组符合原始数据特征的随机数据集,再将这些随机数据集输入KMeans算法,并计算每个随机数据集的对数误差。最后,计算参考数据集的对数误差的平均值与原始数据集的对数误差之差,得到Gap统计量。选择使得Gap统计量最大的K值作为最佳K值。 总之,选择K值的方法包括观察轮廓系数和使用Gap统计量法。这些方法可以帮助我们确定最佳的K值,以获得准确且有意义的聚类结果。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [K-means聚类算法的理论研究和改进,并通过matlab仿真分析,matlab源码+word版论文。](https://download.csdn.net/download/ccsss22/85303745)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [kmeans算法的k值选择](https://blog.csdn.net/m0_62865498/article/details/130517030)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值