1.随机事件
2.事件关系与运算
事件的包含:
(1) : 事件
发生必导致事件
发生.
事件的相等
(2)
事件的积:
(3):事件
与
同时发生,简记
;
推广 事件
同时发生。
互不相容事件(互斥事件):
(4):
与
不能同时发生.
推广:n个事件互斥的充分必要条件是任两个事件互斥.
事件的和(并)
(5) :事件
与
至少有一个发生, 当
:
.
事件的差:
(6):
发生而
不发生.
对立事件(逆事件)
(7): 由
不发生所构成的事件.
事件的运算性质
交换律:
结合律:
分配律:
对偶原则(德—摩根律) : ,
3.古典概率
概率:表示事件发生可能性大小的数值,称为事件
的概率,记为
;概率是随机事件的函数.
古典概率的定义:
若试验的样本空间满足:
只有有限个样本点 — 有限性,
每个样本点发生的可能性相等 — 等可能性.
称此试验为古典概型试验.
古典概率的计算公式:
在古典概型下,事件的概率定义为:
这里计算样本点数的主要工具是排列、组合.
加法原理
设完成一件事有种方式
第一种方式有种方法,
第二种方式有种方法,
……
第种方式有
种方法,
则完成这件事总共有 种方法 .
乘法原理
设完成一件事必须经过个步骤,
第一个步骤有种方法,
第二个步骤有种方法,
第三个步骤有种方法,
……
第 个步骤有nr种方法.
则完成这件事总 共有种方法 .
排列和组合的区别
顺序不同是不同排列,组合不管顺序
元素无重复排列
(1)将个不同元素按照一定次序排成一列, 称为全排列,全排列的个数为
元素无重复排列
(2)从个不同元素中任取
个
元素排成一列,不同的排列总数为
时,则为全排列
元素允许重复的排列
(3)从个不同元素中取
个
排成一列, (元素允许重复)不同排列的总数为
组合
(1)组合:从个不同元素中取
个元素组成一组,(无次序)称为一个组合,所 有组合的个数为
(2) 个不同元素分为
个
不 同组,每组元素个数分别为
个的 分法总数为
其中
古典概率的性质
(1) ;
(2)
(3) 若事件互斥,则
;
推广:若 互斥,则:
.
这是概率的加法公式或概率的有限可加性
(4) ;
(5) ;
(6)若,则
,且
(7) (一般概率加法公式)
推广:
4.几何概率
几何概率;
定义向一区域(可以是直线区域、平面 区域或空间区域)中掷一质点
,若
必落 在
内,且落在
内任何区域
上的可能性只 与A的度量(如长度,面积, „)成正比,而与
的位置和形状无关, 则这个试验称为几 何概型试验;定义
落在
中的概率
为
特点:样本空间满足
有无穷多个样本点 — 无限性,
每个样本点发生的可能性相等 — 等可能性.
几何概率的性质
(1) ;
(2) ;
(3) 若 互斥,则:
古典概率的其它性质对几何概率也同样成立
5.统计概率
频率
定义 设为某一试验的事件,将试验 在相同的条件下重复进行
次,用
表示
出现的次数, 则
称为事件的相对频率.
频率的稳定性
在充分多次试验中,事件的频率总在一个定值附近摆动,而且,试验次数越多摆动越小.这个性质叫做频率的稳定性
统计概率
定义:在固定条件下,重复做次试验, 如果当
增大时,事件
出现的频率
围绕着某一个常数
摆动;随着
的增大,这种摆动的幅度越来越小,则称常数
为事件
的概率,即
此定义适合于一切类型的试验.
当n充分大时,频率作为概率的近似值, 即
足以满足实际需要.
频率的性质
(1) ;
(2) ;
(3) 若互斥,则:
统计概率的性质
(1);
(2) ;
(3) 若 互斥,则:
古典概率的其它性质对统计概率也同样成立..
6.概率的公理化定义
概率的公理化定义
1933年,苏联数学家 柯尔莫哥洛夫给出了概率的公理化定义. 通过规定概率应具备的基本性质来定义概率.
设随机试验的样本空间为S,对每个事件,定义
,且满足 :
公理1 —— 非负性 ;
公理2 —— 规范性 ;
公理3 若事件互不相容,则
——可列可加性; 称
为事件
的概率.
7.条件概率、乘法公式
条件概率
定义:
性质: 设.
(1)非负性: ;
(2)规范性: ;
(3)可列可加性: 设互不相容,则
(4) ;
(5) ;
(6);
;
(7).
条件概率具有概率的所有性质.
乘法定理
乘法定理
推广
8.全概率公式
全概率公式
定理 设是两两互斥的事件,且
, 若对任一事件
, 有
,则
9.贝叶斯公式
定理
设是两两互斥的事件,且
若对任一事件
, 有
,且
, 则
贝叶斯公式(Bayes)
定理 设是两两互斥的事件,且
若对任一事件
, 有
,且
, 则
和
分别称为原因的验前概率和验后概率
10.事件的独立性
两事件的独立性
的发生并不影响B发生可能性的大小, 这时称事件
、
独立.
由
定义 设、
是两个事件,如果
,则称
与
相互独立.
当,当
时,
与
相互独立
三个事件的独立性
定义 设三个事件,若
两两独立、
相互独立
n个事件独立
定义 设是
个事件,如果对任 意
,任意
具有等式
称相互独立
11.二项概率公式
重伯努利试验
若一个试验只有两个结果: 和
, 称试验为伯努利试验.
设, 则
.
将伯努利试验重复、独立地进行次, 称为
重伯努利试验
注意:
每次试验中 保持不变
各次试验的结果互不影响
二项概率公式
定理1 设每次试验中成功A的概率为, 则在
重伯努利试验中
恰好 发生
次的概率为
其中,.
二项概率的泊松(Poisson)逼近定理
定理2 如果使得
保持为正常数,则
对一致地成立.
12.随机变量的概念
随机变量函数的概念
定义 设随机试验的样本空间是. 若对
中的每个样本点
, 都有唯一的实数值
与之对 应, 称
为随机变量, 简记为
.
随机变量是基本事件
的函数, 其定义 域为
, 值域为某个实数集合.
随机变量取某个值或某些值表示事件,且具有一定的概率.
随机变量函数的意义
随机变量通常用大写字母或 希腊字母
等表示.
随机变量的取值一般用小写字母等表示.
随机变量函数的分类
随机变量:离散性、连续型
13.离散型随机变量
离散型随机变量
只能取有限个值或可列无穷多个值的随机 变量称为离散型随机变量.
概率分布列
... | ... | ||||
... | ... |
为离散型随机变量的概率分布列, 简称分布列或分布律.
分布列的性质
(1) ,
(2)
几个常用的离散型分布
两点分布(伯努利分布、 (0-1)分布)
定义 若随机变量的分布列是
称服从两点分布或伯努利分布, 也称为 (0 – 1) 分布,记为
.
若 , 称
服从退化分布.
二项分布(Binomial)
定义 若随机变量X的分布列是
称
服从参数为
的二项分布,记为
.
当时,
为两点分布.
二项分布满足分布列的两个性质. 即
泊松分布(Poisson)
定义 若随机变量的分布列
称X服从参数为 的泊松分布,记为
.
泊松分布满足分布列的两个性质. 即
几何分布(Geometric)
定义 若随机变量的分布列
称服从参数为p的几何分布,记为
.
几何分布满足分布列的两个性质
几何分布的无记忆性
设,
为任意的两个正整数, 则
定义 设有N件产品, 其中有M件次品. 今从 中任取件不同产品, 则这
件中所含的次品 数
的分布列为
规定当时,
.
称服从超几何分布.
二项分布用来描述有放回抽样.
超几何分布用来描述不放回抽样.
当总体N很大,抽样数n较小时, 可用二项分布来逼近超几何分布.
14.随机变量的分布函数
分布函数:
定义 设为一随机变量, 称
. 为X的分布函数,
记为或
.
随机变量都有分布函数.
分布函数的几何意义
利用分布函数计算概率
设随机变量X的分布函数为,
,
为任 意实数,则
分布函数的性质
(i)
(ii) ,即F(x)是单调非减的;
(iii)
(iv) 即F(x)是右连续的.
15.连续型随机变量
连续型随机变量
定义 设随机变量X的分布函数为, 若存 在一个非负的函数
, 对任何实数
, 有
称X为连续型随机变量, 称为
的概率密度函数, 简称概率密度.也可记为
.
由定义, 可得下面两个结论
(1)连续型随机变量的分布函数一定是连续的;
(2)对f(x)的连续点, 有
与
可以互推.
概率密度的性质
(1)
(2)
这两条是判定函数是否为概率密 度函数的充要条件.
(3)
连续型随机变量取任一指定值的概率为0, 即 .这是因为
由F(x)连续得
不能推出
同理 不能推出
不能推出
几种重要的连续型随机变量
均匀分布(Uniform)
定义 若随机变量X的概率密度为
称X在区间上服从均匀分布,记为
.
均匀的含义是等可能
若为
中的任一子区间, 则
说明: X落在长度相等的各个子区间的可能 性是相等的.属于几何概率.
若,则
.
概率密度的性质
若,则
的分布函数
指数分布(Exponential)
定义 若连续型随机变量的概率密度
称服从参数为
的指数分布.记为
.
满足,
分布函数为:
指数分布常用来近似地表示各种寿命的分布.
指数分布的无记忆性
16.正态分布
正态分布(Normal)
定义 若随机变的概率密度为
为常数, 且
, 称
服从参数为
的正态分布或高斯(Gauss)分布, 也称
为正态变量, 记作
.
可以验证:
正态分布密度曲线特征
(1) 关于对称;
(2) 当时,
取得最大值
;
(3) 当时,
(4)曲线在处有拐点;
(5) 决定对称轴的位置. 当固定
值,改变
值时,
的形状不变,只是沿着
轴平移;
(6) 决定离散程度. 当固定
值,改变
值时, f(x)的对称轴不 变,但形状改变.
越大,图形越矮越胖,
越小,图形越高越瘦.
正态变量X的分布函数
标准正态分布定义
若,称
服从标准正态分布.
概率密度为
分布函数为;
一般的正态分布的分布函数
与标 准正态分布的分布函数
间的关系为
即,若,则
17.随机变量的函数分布
离散型随机变量函数的分布
连续型随机变量函数的分布
连续型随机变量函数概率密度的两种求法
分布函数法
已知X的概率密度,分布函数
,
, 求Y概率密度
,分两步:
(1)先求Y的分布函 解出
, 表示成
的分布函数;
(2)求导数:.
公式法
设X的概率密度,
为
上严格单调可微函数
,则
的 概率密度为
其中为
的反函数且
.
18.多维随机变量,分布函数、边缘分布函数
多维随机变量
定义 若定义在同一样 本空间S上的n个随机变量,称
为 n 维随机变量或 n 维随机向量,简记为
.
二维随机变量的分布函数
二维随机变量
为和
的联合分布函数
两事件同时发生
分布函数的性质
(1)对任意实数有
;
(2)任意;
任意.
即对每个自变量都是单调不减的;
(3)对任意有
(4);
(5)对任意实数,有
.
因为
设二维随机变量的分布函数
称
与
各自的分布函数
和
为
的边缘分布函数或
关于
和
的边缘分布 函数. 即
同理,
19.二维离散型随机变量
二维离散型随机变量
定义1 若二维随机变量所有可能取 值是有限对或可列无限多对,则称
为 二维离散型随机变量.
定义2设的所有可能取值为
,称
, 为
的分布列或
和
的联合分布列.
的分布列也可用列表法表示:
分布列的性质:
(1) ;
(2)
(3)
的边缘分布列
设离散型随机变量 的分布列为
的边缘分布列为:
的边缘分布列为:
二维离散型随机变量的分布函数:
和式是对所有满足 的
求和.
20.二维连续性随机变量
二维连续型随机变量
二维连续型随机变量和
的联合概率密度
定义 设二维随机变量的分布函数为
,若存在非负函数
使得对任意实数
有
称
为二维连续型随机变量, 称
为 二维随机变量
的概率密度, 或称为
与
的联合概率密度.
概率密度的性质
(1)
(2)
(3) 设是
平面上的一个区域,则点
落在
中的概率为
(4) 在的连续点有
边缘概率密度
设二维连续型随机变量的密度函数为
,称
为二维随机变量的边缘概率密度.
二维均匀分布
设G是平面上的有界区域,其面积为 .若二维随机变量
具有概率密度
则称在
上服从均匀分布
,且
满足概率密度的两个基本性质.
二维正态分布
设二维随机变量的概率密度
其中 ,都是常数,称
服从参数为
的二维正态分布,记 为
二维正态分布的两个边缘分布都是一维 正态分布,即
21.随机变量的独立性
随机变量的独立性
两事件独立的定义是: 若
则称事件
独立 .
设是两个随机变量,若对任意的实数
, 令
,则
定义 设依次为
的分布函数.若对任意实数
成立
称与
相互独立.
为连续型随机变量时,
与
独立的充要条件是
这里分别是
的概率密度.
为离散型随机变量时,
与
独立的充要条件是
这里分别是
的分布列.
维随机变量的一些概念
维随机变量的分布函数
设为
维随机变量,
为任意实数,则
元函数
称为
的分布函数.
n维随机变量的概率密度
设为
维随机变量
的分布函数.若存在非负函数
, 对 任意实数
有
, 称
为连续型随机变量,
为
维随机变量的概率密度.
维随机变量的相互独立
设为
维随机变量
的分布函数.若对任意实数
有
则称
是相互独立的. 对连续型随机变量,则
相互独立 的充要条件是
.
22.二维随机变量函数的分布
离散型随机变量函数的分布
设二维离散型随机变量的分布列为
, 则
是一维离散型随机变量,用
表示
的取值,则
的 分布列 ,
连续型随机变量函数的分布
设是二维连续型随机变量,其概率 密度为
,
,求
的概率密度
或分布函数
分布函数法:
连续型随机变量的分布
设和
的联合密度为
, 则
的分布函数为
故的概率密度为
由和
的对称性,
又可写成
积公式 当和
独立时,称
的概率 密度公式为卷积公式, 即
及
的分布
设是两个相互独立的随机变量,它们的 分布函数分别为
和
,求
及
的分布函数
和
.
分布函数为
的分布函数为
个独立随机变量的最值分布
设是
个相互独立的随机变量,它们的分布函数分别为
和
的分布函数为
若 独立同分布于相同的分布函数
,则