将一张100 元的钞票换成1 元、2元、5 元和10 元的零钱,每种零钞至少一张,编写程序输出所有的换法,尽可能地提高算法效率。

该博客介绍了如何使用回溯法高效解决将100元换成1元、2元、5元和10元零钱的问题。通过预先计算和剪枝策略减少解空间,实现算法效率的提升。代码示例展示了如何遍历并剪枝以找到所有可能的换法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法引入

将一张100 元的钞票换成1 元、2元、5 元和10 元的零钱,每种零钞至少一张,编写程序输出所有的换法,尽可能地提高算法效率。

这道题解起来很简单,有意思的主要是这道题的最后一句话:“尽可能地提高算法效率”。

思路

这道题不是要求最优解,而是要求可行解,所以有很多求最优解的快捷算法不能使用。
基本算法可以用 快乐蛮力法 直接遍历整个幂集,要求尽可能地提高算法效率,就不能遍历完整个解空间,因此利用的 回溯法 来减去不要的分支

提高方法

1 利用题目要求_每种零钞至少一张_ ,通过一定的预先计算减少解空间,比如对10元的张数来说,由于“每个面额的钞票至少一张的设定,因此最多是9张”
2 利用 回溯法 的思想,剪去不要的子树。同时我还利用1元零钱逐渐递增的特点,通过判断加速遍历左子树。

代码

//回溯法
#include<iostream>
using namespace std;

//a[0]表示10元,a[1]表示5元,a[2]表示2元,a[3]表示1元
// 计算和函数
int sum(int a[]) {
	return 10 * a[0] + 5 * a[1] + 2 * a[2] + 1 * a[3];
}

void changeMoney() {
	int a[4] = {0};
	int k=1;
	for(a[0]=1;a[0]<=9;a[0]++)
		for(a[1]=1;a[1]<20;a[1]++)
			for(a[2]=1;a[2]<=42;a[2]++)
				for (a[3] = 1; a[3] <= 83; a[3]++)
				{
					if (sum(a) <= 98) a[3]++;//左孩子加速遍历
					if (sum(a) == 100) { 
						cout << "第" << k << "种换法为"<<a[0]<<"张10元,"<<a[1]<<"张5元,"<<a[2]<<"张2元,"<<a[3]<<"张1元"<<endl;
						k++;
					}
					else if (sum(a) > 100) break;//右孩子结点剪枝
				}
}

int main()
{
	changeMoney();
	return true;

}

参考

网上我看到的都是蛮力法,最多在解空间上有删减,大家也可以参考一下:https://blog.csdn.net/BianChengBuQiuRen/article/details/109105335
https://www.tqwba.com/x_d/jishu/322692.html

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AlbertOS

还会有大爷会打钱?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值