在数据爆炸的时代,可视化能力已成为职场人的新基建。
DeepSeek如同赛博世界的解码器,用三把密钥——ECharts的精准、Mermaid的简洁、Python的强悍,帮你将混沌数据炼成霓虹闪烁的视觉武器。
无需代码基础,只需一句指令,让AI替你征战信息战场。
经过我的实践,以下三种方法集合DeepSeek可以轻松制作图表:
1、 用ECharts生成专业统计图表
PPT图表根本不用愁,3分钟就能制作一个可视化图表!
- 去ECharts官网随便找一个喜欢的图表模板:https://echarts.apache.org/examples/zh/index.html
- 复制图表的代码
- 直接上传到DeepSeek,告诉它你的数据,让它基于你复制的代码生成图表
- 直接在DeepSeek上在线运行
示例模板如下:
请帮我基于2024年用户向deepseek提问问题的数据,并且结合如下echarts代码输出html代码:{}
效果图如下:
本方法作用: 此方法结合ECharts丰富的图表模板与DeepSeek的数据处理能力,让用户能快速将自有数据转化为专业、可交互的统计图表,并直接在线预览和调整,极大提升可视化效率。
2、 用Mermaid绘制流程图
如果你需要一个项目的流程图,使用Meraid+DeepSeek是再好不过的选择!
- 告诉DeepSeek你需要什么类型的图表
- 告诉DeepSeek要生成的内容
- 让DeepSeek以Meraid语法生成代码
- 复制代码到Mermaid Live Editor网站,即可一键渲染
示例模板如下:
请帮我基于Mermaid语法生成一个网络商城的流程图
效果图如下:
本方法作用: 通过DeepSeek生成Mermaid代码,用户可将文本描述轻松转换为标准流程图或其他结构图示。代码简洁易懂,配合在线编辑器即可快速渲染,适合清晰表达复杂逻辑与过程。
3、 用Python绘制高级数据分析图表
- 上传你的数据
- 告诉DeepSeek你需要生成什么样的图表数据
- 复制生成的python代码到python环境下运行即可(注:可能会有需要下载的库,直接向DeepSeek提问如何下载即可)
示例模板如下:
请帮我基于2024年用户向deepseek提问问题的数据,使用python语法输出以散点图图表显示的代码,使其能够在任意python环境下运行
效果图如下:
本方法作用: 利用Python的强大数据分析与可视化库,DeepSeek可生成定制化代码,帮助用户基于自有数据绘制高级图表,进行深入分析与洞察,适合需要复杂数据处理和高度自定义的场景。
工具的价值不在于炫技,而在于解决问题。
这三种方法如同三棱镜,将AI能力折射成具体场景的光谱。
记住:真正的效率,是把技术转化为肌肉记忆,让机器做机器擅长的事,你专注创造人的价值。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。